提交 84dd46a7 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2141 add ci test cast for yolov3

Merge pull request !2141 from chengxb7532/cxb_st
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Config parameters for YOLOv3 models."""
class ConfigYOLOV3ResNet18:
"""
Config parameters for YOLOv3.
Examples:
ConfigYoloV3ResNet18.
"""
img_shape = [352, 640]
feature_shape = [32, 3, 352, 640]
num_classes = 2
nms_max_num = 50
backbone_input_shape = [64, 64, 128, 256]
backbone_shape = [64, 128, 256, 512]
backbone_layers = [2, 2, 2, 2]
backbone_stride = [1, 2, 2, 2]
ignore_threshold = 0.5
obj_threshold = 0.3
nms_threshold = 0.4
anchor_scales = [(10, 13),
(16, 30),
(33, 23),
(30, 61),
(62, 45),
(59, 119),
(116, 90),
(156, 198),
(163, 326)]
out_channel = int(len(anchor_scales) / 3 * (num_classes + 5))
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""YOLOv3 dataset"""
from __future__ import division
import os
import numpy as np
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
import mindspore.dataset as de
from mindspore.mindrecord import FileWriter
import mindspore.dataset.transforms.vision.c_transforms as C
from src.config import ConfigYOLOV3ResNet18
iter_cnt = 0
_NUM_BOXES = 50
np.random.seed(1)
de.config.set_seed(1)
def preprocess_fn(image, box, is_training):
"""Preprocess function for dataset."""
config_anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 163, 326]
anchors = np.array([float(x) for x in config_anchors]).reshape(-1, 2)
do_hsv = False
max_boxes = 20
num_classes = ConfigYOLOV3ResNet18.num_classes
def _rand(a=0., b=1.):
return np.random.rand() * (b - a) + a
def _preprocess_true_boxes(true_boxes, anchors, in_shape=None):
"""Get true boxes."""
num_layers = anchors.shape[0] // 3
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
true_boxes = np.array(true_boxes, dtype='float32')
# input_shape = np.array([in_shape, in_shape], dtype='int32')
input_shape = np.array(in_shape, dtype='int32')
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2.
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]
grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8]
y_true = [np.zeros((grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]),
5 + num_classes), dtype='float32') for l in range(num_layers)]
anchors = np.expand_dims(anchors, 0)
anchors_max = anchors / 2.
anchors_min = -anchors_max
valid_mask = boxes_wh[..., 0] >= 1
wh = boxes_wh[valid_mask]
if len(wh) >= 1:
wh = np.expand_dims(wh, -2)
boxes_max = wh / 2.
boxes_min = -boxes_max
intersect_min = np.maximum(boxes_min, anchors_min)
intersect_max = np.minimum(boxes_max, anchors_max)
intersect_wh = np.maximum(intersect_max - intersect_min, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
for l in range(num_layers):
if n in anchor_mask[l]:
i = np.floor(true_boxes[t, 0] * grid_shapes[l][1]).astype('int32')
j = np.floor(true_boxes[t, 1] * grid_shapes[l][0]).astype('int32')
k = anchor_mask[l].index(n)
c = true_boxes[t, 4].astype('int32')
y_true[l][j, i, k, 0:4] = true_boxes[t, 0:4]
y_true[l][j, i, k, 4] = 1.
y_true[l][j, i, k, 5 + c] = 1.
pad_gt_box0 = np.zeros(shape=[50, 4], dtype=np.float32)
pad_gt_box1 = np.zeros(shape=[50, 4], dtype=np.float32)
pad_gt_box2 = np.zeros(shape=[50, 4], dtype=np.float32)
mask0 = np.reshape(y_true[0][..., 4:5], [-1])
gt_box0 = np.reshape(y_true[0][..., 0:4], [-1, 4])
gt_box0 = gt_box0[mask0 == 1]
pad_gt_box0[:gt_box0.shape[0]] = gt_box0
mask1 = np.reshape(y_true[1][..., 4:5], [-1])
gt_box1 = np.reshape(y_true[1][..., 0:4], [-1, 4])
gt_box1 = gt_box1[mask1 == 1]
pad_gt_box1[:gt_box1.shape[0]] = gt_box1
mask2 = np.reshape(y_true[2][..., 4:5], [-1])
gt_box2 = np.reshape(y_true[2][..., 0:4], [-1, 4])
gt_box2 = gt_box2[mask2 == 1]
pad_gt_box2[:gt_box2.shape[0]] = gt_box2
return y_true[0], y_true[1], y_true[2], pad_gt_box0, pad_gt_box1, pad_gt_box2
def _infer_data(img_data, input_shape, box):
w, h = img_data.size
input_h, input_w = input_shape
scale = min(float(input_w) / float(w), float(input_h) / float(h))
nw = int(w * scale)
nh = int(h * scale)
img_data = img_data.resize((nw, nh), Image.BICUBIC)
new_image = np.zeros((input_h, input_w, 3), np.float32)
new_image.fill(128)
img_data = np.array(img_data)
if len(img_data.shape) == 2:
img_data = np.expand_dims(img_data, axis=-1)
img_data = np.concatenate([img_data, img_data, img_data], axis=-1)
dh = int((input_h - nh) / 2)
dw = int((input_w - nw) / 2)
new_image[dh:(nh + dh), dw:(nw + dw), :] = img_data
new_image /= 255.
new_image = np.transpose(new_image, (2, 0, 1))
new_image = np.expand_dims(new_image, 0)
return new_image, np.array([h, w], np.float32), box
def _data_aug(image, box, is_training, jitter=0.3, hue=0.1, sat=1.5, val=1.5, image_size=(352, 640)):
"""Data augmentation function."""
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
iw, ih = image.size
ori_image_shape = np.array([ih, iw], np.int32)
h, w = image_size
if not is_training:
return _infer_data(image, image_size, box)
flip = _rand() < .5
# correct boxes
box_data = np.zeros((max_boxes, 5))
while True:
# Prevent the situation that all boxes are eliminated
new_ar = float(w) / float(h) * _rand(1 - jitter, 1 + jitter) / \
_rand(1 - jitter, 1 + jitter)
scale = _rand(0.25, 2)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
dx = int(_rand(0, w - nw))
dy = int(_rand(0, h - nh))
if len(box) >= 1:
t_box = box.copy()
np.random.shuffle(t_box)
t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(iw) + dx
t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(ih) + dy
if flip:
t_box[:, [0, 2]] = w - t_box[:, [2, 0]]
t_box[:, 0:2][t_box[:, 0:2] < 0] = 0
t_box[:, 2][t_box[:, 2] > w] = w
t_box[:, 3][t_box[:, 3] > h] = h
box_w = t_box[:, 2] - t_box[:, 0]
box_h = t_box[:, 3] - t_box[:, 1]
t_box = t_box[np.logical_and(box_w > 1, box_h > 1)] # discard invalid box
if len(t_box) >= 1:
box = t_box
break
box_data[:len(box)] = box
# resize image
image = image.resize((nw, nh), Image.BICUBIC)
# place image
new_image = Image.new('RGB', (w, h), (128, 128, 128))
new_image.paste(image, (dx, dy))
image = new_image
# flip image or not
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
# convert image to gray or not
gray = _rand() < .25
if gray:
image = image.convert('L').convert('RGB')
# when the channels of image is 1
image = np.array(image)
if len(image.shape) == 2:
image = np.expand_dims(image, axis=-1)
image = np.concatenate([image, image, image], axis=-1)
# distort image
hue = _rand(-hue, hue)
sat = _rand(1, sat) if _rand() < .5 else 1 / _rand(1, sat)
val = _rand(1, val) if _rand() < .5 else 1 / _rand(1, val)
image_data = image / 255.
if do_hsv:
x = rgb_to_hsv(image_data)
x[..., 0] += hue
x[..., 0][x[..., 0] > 1] -= 1
x[..., 0][x[..., 0] < 0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x > 1] = 1
x[x < 0] = 0
image_data = hsv_to_rgb(x) # numpy array, 0 to 1
image_data = image_data.astype(np.float32)
# preprocess bounding boxes
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \
_preprocess_true_boxes(box_data, anchors, image_size)
return image_data, bbox_true_1, bbox_true_2, bbox_true_3, \
ori_image_shape, gt_box1, gt_box2, gt_box3
if is_training:
images, bbox_1, bbox_2, bbox_3, _, gt_box1, gt_box2, gt_box3 = _data_aug(image, box, is_training)
return images, bbox_1, bbox_2, bbox_3, gt_box1, gt_box2, gt_box3
images, shape, anno = _data_aug(image, box, is_training)
return images, shape, anno
def anno_parser(annos_str):
"""Parse annotation from string to list."""
annos = []
for anno_str in annos_str:
anno = list(map(int, anno_str.strip().split(',')))
annos.append(anno)
return annos
def filter_valid_data(image_dir, anno_path):
"""Filter valid image file, which both in image_dir and anno_path."""
image_files = []
image_anno_dict = {}
if not os.path.isdir(image_dir):
raise RuntimeError("Path given is not valid.")
if not os.path.isfile(anno_path):
raise RuntimeError("Annotation file is not valid.")
with open(anno_path, "rb") as f:
lines = f.readlines()
for line in lines:
line_str = line.decode("utf-8").strip()
line_split = str(line_str).split(' ')
file_name = line_split[0]
if os.path.isfile(os.path.join(image_dir, file_name)):
image_anno_dict[file_name] = anno_parser(line_split[1:])
image_files.append(file_name)
return image_files, image_anno_dict
def data_to_mindrecord_byte_image(image_dir, anno_path, mindrecord_dir, prefix="yolo.mindrecord", file_num=8):
"""Create MindRecord file by image_dir and anno_path."""
mindrecord_path = os.path.join(mindrecord_dir, prefix)
writer = FileWriter(mindrecord_path, file_num)
image_files, image_anno_dict = filter_valid_data(image_dir, anno_path)
yolo_json = {
"image": {"type": "bytes"},
"annotation": {"type": "int64", "shape": [-1, 5]},
}
writer.add_schema(yolo_json, "yolo_json")
for image_name in image_files:
image_path = os.path.join(image_dir, image_name)
with open(image_path, 'rb') as f:
img = f.read()
annos = np.array(image_anno_dict[image_name])
row = {"image": img, "annotation": annos}
writer.write_raw_data([row])
writer.commit()
def create_yolo_dataset(mindrecord_dir, batch_size=32, repeat_num=10, device_num=1, rank=0,
is_training=True, num_parallel_workers=8):
"""Creatr YOLOv3 dataset with MindDataset."""
ds = de.MindDataset(mindrecord_dir, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank,
num_parallel_workers=num_parallel_workers, shuffle=False)
decode = C.Decode()
ds = ds.map(input_columns=["image"], operations=decode)
compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training))
if is_training:
hwc_to_chw = C.HWC2CHW()
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"],
columns_order=["image", "bbox_1", "bbox_2", "bbox_3", "gt_box1", "gt_box2", "gt_box3"],
operations=compose_map_func, num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=hwc_to_chw, num_parallel_workers=num_parallel_workers)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num)
else:
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "image_shape", "annotation"],
columns_order=["image", "image_shape", "annotation"],
operations=compose_map_func, num_parallel_workers=num_parallel_workers)
return ds
此差异已折叠。
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## train YOLOv3 example ########################
train YOLOv3 and get network model files(.ckpt) :
python train.py --image_dir /data --anno_path /data/coco/train_coco.txt --mindrecord_dir=/data/Mindrecord_train
If the mindrecord_dir is empty, it wil generate mindrecord file by image_dir and anno_path.
Note if mindrecord_dir isn't empty, it will use mindrecord_dir rather than image_dir and anno_path.
"""
import os
import time
import pytest
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.train import Model
from mindspore.common.initializer import initializer
from mindspore.train.callback import Callback
from src.yolov3 import yolov3_resnet18, YoloWithLossCell, TrainingWrapper
from src.dataset import create_yolo_dataset
from src.config import ConfigYOLOV3ResNet18
np.random.seed(1)
def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps=False):
"""Set learning rate."""
lr_each_step = []
for i in range(global_step):
if steps:
lr_each_step.append(learning_rate * (decay_rate ** (i // decay_step)))
else:
lr_each_step.append(learning_rate * (decay_rate ** (i / decay_step)))
lr_each_step = np.array(lr_each_step).astype(np.float32)
lr_each_step = lr_each_step[start_step:]
return lr_each_step
def init_net_param(network, init_value='ones'):
"""Init:wq the parameters in network."""
params = network.trainable_params()
for p in params:
if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
p.set_parameter_data(initializer(init_value, p.data.shape(), p.data.dtype()))
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
self.loss_list = []
def step_end(self, run_context):
cb_params = run_context.original_args()
self.loss_list.append(cb_params.net_outputs.asnumpy())
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
class TimeMonitor(Callback):
"""Time Monitor."""
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
self.epoch_mseconds_list = []
self.per_step_mseconds_list = []
def epoch_begin(self, run_context):
self.epoch_time = time.time()
def epoch_end(self, run_context):
epoch_mseconds = (time.time() - self.epoch_time) * 1000
self.epoch_mseconds_list.append(epoch_mseconds)
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size)
DATA_DIR = "/home/workspace/mindspore_dataset/coco/coco2017/mindrecord_train/yolov3"
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_yolov3():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
rank = 0
device_num = 1
lr_init = 0.001
epoch_size = 3
batch_size = 32
loss_scale = 1024
mindrecord_dir = DATA_DIR
# It will generate mindrecord file in args_opt.mindrecord_dir,
# and the file name is yolo.mindrecord0, 1, ... file_num.
if not os.path.isdir(mindrecord_dir):
raise KeyError("mindrecord path is not exist.")
prefix = "yolo.mindrecord"
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
print("yolov3 mindrecord is ", mindrecord_file)
if not os.path.exists(mindrecord_file):
print("mindrecord file is not exist.")
assert False
else:
loss_scale = float(loss_scale)
# When create MindDataset, using the fitst mindrecord file, such as yolo.mindrecord0.
dataset = create_yolo_dataset(mindrecord_file, repeat_num=epoch_size,
batch_size=batch_size, device_num=device_num, rank=rank)
dataset_size = dataset.get_dataset_size()
print("Create dataset done!")
net = yolov3_resnet18(ConfigYOLOV3ResNet18())
net = YoloWithLossCell(net, ConfigYOLOV3ResNet18())
init_net_param(net)
total_epoch_size = 60
lr = Tensor(get_lr(learning_rate=lr_init, start_step=0,
global_step=total_epoch_size * dataset_size,
decay_step=1000, decay_rate=0.95, steps=True))
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), lr, loss_scale=loss_scale)
net = TrainingWrapper(net, opt, loss_scale)
model_callback = ModelCallback()
time_monitor_callback = TimeMonitor(data_size=dataset_size)
callback = [model_callback, time_monitor_callback]
model = Model(net)
print("Start train YOLOv3, the first epoch will be slower because of the graph compilation.")
model.train(epoch_size, dataset, callbacks=callback, dataset_sink_mode=True)
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
loss_value = np.array(model_callback.loss_list)
expect_loss_value = [6600, 4200, 2700]
print("loss value: {}".format(loss_value))
assert loss_value[0] < expect_loss_value[0]
assert loss_value[1] < expect_loss_value[1]
assert loss_value[2] < expect_loss_value[2]
epoch_mseconds = np.array(time_monitor_callback.epoch_mseconds_list)[2]
expect_epoch_mseconds = 950
print("epoch mseconds: {}".format(epoch_mseconds))
assert epoch_mseconds <= expect_epoch_mseconds
per_step_mseconds = np.array(time_monitor_callback.per_step_mseconds_list)[2]
expect_per_step_mseconds = 110
print("per step mseconds: {}".format(per_step_mseconds))
assert per_step_mseconds <= expect_per_step_mseconds
print("yolov3 test case passed.")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册