提交 8461b2f0 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!4296 [MS][LITE][Develop]optimize resize

Merge pull request !4296 from chenjianping/lite_dev2
......@@ -46,6 +46,7 @@ int Concat::InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor
auto input0_shape_without_axis = input0_shape;
input0_shape_without_axis.erase(input0_shape_without_axis.begin() + axis);
auto input0_data_type = inputs_.at(0)->data_type();
schema::Format input0_format = inputs_[0]->GetFormat();
int output_axis_dim = input0_shape.at(axis);
for (size_t i = 1; i < inputs_.size(); ++i) {
if (inputs_.at(i)->data_type() != input0_data_type) {
......@@ -53,6 +54,10 @@ int Concat::InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor
return RET_PARAM_INVALID;
}
if (inputs_.at(i)->GetFormat() != input0_format) {
MS_LOG(ERROR) << "All input format should be the same!";
return RET_PARAM_INVALID;
}
auto shape_tmp = inputs_.at(i)->shape();
if (shape_tmp.size() != input0_shape.size()) {
MS_LOG(ERROR) << "All inputs should have the same dim num!";
......
......@@ -44,7 +44,13 @@ int Stack::InferShape(std::vector<tensor::Tensor *> inputs, std::vector<tensor::
MS_LOG(ERROR) << "Invalid axis " << stack_prim->axis();
return RET_PARAM_INVALID;
}
schema::Format input0_format = input->GetFormat();
for (size_t i = 1; i < inputs.size(); ++i) {
if (inputs[i]->GetFormat() != input0_format) {
MS_LOG(ERROR) << "All inputs should have the same format!";
return RET_PARAM_INVALID;
}
auto input_shape_tmp = inputs[i]->shape();
if (input_shape_tmp.size() != input_shape.size()) {
MS_LOG(ERROR) << "All input shape size should be the same!";
......
......@@ -27,9 +27,7 @@ class BatchToSpaceBaseCPUKernel : public LiteKernel {
BatchToSpaceBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
opParameter->thread_num_ = ctx->thread_num_;
}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
virtual ~BatchToSpaceBaseCPUKernel() = default;
......
......@@ -29,11 +29,9 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Concat;
namespace mindspore::kernel {
int ConcatBaseCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
int ConcatBaseCPUKernel::Init() { return RET_OK; }
int ConcatBaseCPUKernel::ReSize() {
axis_ = concat_param_->axis_ >= 0 ? concat_param_->axis_ : inputs_.front()->shape().size() + concat_param_->axis_;
return RET_OK;
}
......
......@@ -31,7 +31,6 @@ class ConcatBaseCPUKernel : public LiteKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
opParameter->thread_num_ = ctx->thread_num_;
concat_param_ = reinterpret_cast<ConcatParameter *>(opParameter);
}
......@@ -39,7 +38,7 @@ class ConcatBaseCPUKernel : public LiteKernel {
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override { return 0; }
......
......@@ -29,9 +29,7 @@ class CropBaseCPUKernel : public LiteKernel {
CropBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
opParameter->thread_num_ = ctx->thread_num_;
}
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {}
~CropBaseCPUKernel() = default;
int Init() override;
......
......@@ -27,9 +27,7 @@ class DepthToSpaceBaseCPUKernel : public LiteKernel {
DepthToSpaceBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
opParameter->thread_num_ = ctx->thread_num_;
}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
virtual ~DepthToSpaceBaseCPUKernel() = default;
......
......@@ -25,26 +25,18 @@ using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::lite::RET_PARAM_INVALID;
using mindspore::schema::PrimitiveType_QuantDTypeCast;
namespace mindspore::kernel {
namespace {
constexpr int kQuantDTypeCastInputNum = 1;
constexpr int kQuantDTypeCastOutputNum = 1;
} // namespace
int QuantDTypeCastCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
if (inputs_.size() != 1) {
MS_LOG(ERROR) << "inputs number should be 1, but " << inputs_.size() << " is given.";
return RET_ERROR;
return RET_PARAM_INVALID;
}
if (outputs_.size() != 1) {
MS_LOG(ERROR) << "outputs number should be 1, but " << inputs_.size() << " is given.";
return RET_ERROR;
return RET_PARAM_INVALID;
}
auto in_tensor = inputs_.front();
auto out_tensor = outputs_.front();
......@@ -63,18 +55,23 @@ int QuantDTypeCastCPUKernel::Init() {
inverse_ = true;
} else {
MS_LOG(ERROR) << "param data type not supported:" << " src: " << param->srcT << " dst: " << param->dstT;
return RET_ERROR;
return RET_PARAM_INVALID;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int QuantDTypeCastCPUKernel::ReSize() {
auto in_tensor = inputs_.front();
num_unit_ = static_cast<int>(in_tensor->DataSize());
thread_n_num_ = MSMIN(thread_num_, num_unit_);
thread_n_stride_ = UP_DIV(num_unit_, thread_n_num_);
return RET_OK;
}
int QuantDTypeCastCPUKernel::ReSize() { return RET_OK; }
int QuantDTypeCastCPUKernel::QuantDTypeCast(int task_id) {
int num_unit_thread = MSMIN(thread_n_stride_, num_unit_ - task_id * thread_n_stride_);
if (num_unit_thread <= 0) {
......@@ -108,6 +105,11 @@ int QuantDTypeCastRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
}
int QuantDTypeCastCPUKernel::Run() {
auto prepare_ret = Prepare();
if (prepare_ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
if (inverse_) {
int8_ptr_ = reinterpret_cast<int8_t *>(inputs_[0]->Data());
float32_ptr_ = reinterpret_cast<float *>(outputs_[0]->Data());
......
......@@ -28,10 +28,7 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Reshape;
namespace mindspore::kernel {
int ReshapeBaseCPUKernel::Init() {
reshape_param_->thread_count_ = thread_count_;
return RET_OK;
}
int ReshapeBaseCPUKernel::Init() { return RET_OK; }
kernel::LiteKernel *CpuReshapeInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
......
......@@ -29,7 +29,7 @@ class ReshapeBaseCPUKernel : public LiteKernel {
ReshapeBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx) {
reshape_param_ = reinterpret_cast<ReshapeParameter *>(opParameter);
}
~ReshapeBaseCPUKernel() = default;
......@@ -39,7 +39,6 @@ class ReshapeBaseCPUKernel : public LiteKernel {
int Run() override { return 0; }
protected:
int thread_count_;
const Context *ctx_;
ReshapeParameter *reshape_param_;
};
......
......@@ -36,7 +36,10 @@ int SoftmaxBaseCPUKernel::Init() {
MS_LOG(ERROR) << "SoftmaxParameter nullptr";
return RET_NULL_PTR;
}
return RET_OK;
}
int SoftmaxBaseCPUKernel::ReSize() {
auto input_tensor = inputs_.front();
auto in_shape = input_tensor->shape();
auto in_dims = in_shape.size();
......
......@@ -28,13 +28,12 @@ class SoftmaxBaseCPUKernel : public LiteKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
opParameter->thread_num_ = ctx->thread_num_;
softmax_param_ = reinterpret_cast<SoftmaxParameter *>(opParameter);
}
~SoftmaxBaseCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override { return 0; }
protected:
......
......@@ -28,7 +28,9 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Split;
namespace mindspore::kernel {
int SplitBaseCPUKernel::Init() {
int SplitBaseCPUKernel::Init() { return RET_OK; }
int SplitBaseCPUKernel::ReSize() {
auto in_tensor = inputs_.front();
auto input_shape = in_tensor->shape();
......
......@@ -35,7 +35,7 @@ class SplitBaseCPUKernel : public LiteKernel {
~SplitBaseCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override { return 0; }
protected:
......
......@@ -30,9 +30,7 @@ class SqueezeBaseCPUKernel : public LiteKernel {
SqueezeBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {
opParameter->thread_num_ = ctx->thread_num_;
}
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {}
virtual ~SqueezeBaseCPUKernel() = default;
......
......@@ -31,6 +31,14 @@ using mindspore::schema::PrimitiveType_StridedSlice;
namespace mindspore::kernel {
int StridedSliceCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int StridedSliceCPUKernel::ReSize() {
auto input = inputs_.at(0);
auto parameter = reinterpret_cast<StridedSliceParameter *>(opParameter);
MS_ASSERT(input);
......@@ -39,13 +47,11 @@ int StridedSliceCPUKernel::Init() {
return RET_OK;
}
int StridedSliceCPUKernel::ReSize() { return 0; }
int StridedSliceCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input = inputs_.at(0);
......
......@@ -27,15 +27,12 @@ class StridedSliceCPUKernel : public LiteKernel {
StridedSliceCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_num_(ctx->thread_num_) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~StridedSliceCPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
private:
int thread_num_;
};
} // namespace mindspore::kernel
......
......@@ -57,7 +57,7 @@ int AddNCPUKernel::AddNParallelRun(int thread_id) {
int AddNCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
elements_num_ = inputs_[0]->ElementsNum();
......
......@@ -29,8 +29,7 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Eltwise;
namespace mindspore::kernel {
ArithmeticCPUKernel::~ArithmeticCPUKernel() {
void ArithmeticCPUKernel::FreeTileData() {
if (tile_data0_ != nullptr) {
delete[](tile_data0_);
tile_data0_ = nullptr;
......@@ -40,21 +39,27 @@ ArithmeticCPUKernel::~ArithmeticCPUKernel() {
tile_data1_ = nullptr;
}
}
ArithmeticCPUKernel::~ArithmeticCPUKernel() {
FreeTileData();
}
int ArithmeticCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ArithmeticCPUKernel::ReSize() {
FreeTileData();
auto element_num = outputs_[0]->ElementsNum();
tile_data0_ = new float[element_num];
tile_data1_ = new float[element_num];
return RET_OK;
}
int ArithmeticCPUKernel::ReSize() { return RET_OK; }
int ArithmeticCPUKernel::DoArithmetic(int task_id) {
auto input0_data = reinterpret_cast<float *>(inputs_[0]->Data());
auto input1_data1 = reinterpret_cast<float *>(inputs_[1]->Data());
......@@ -98,7 +103,7 @@ int ArithmeticsRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int ArithmeticCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
if (arithmeticParameter_->broadcasting_) {
......
......@@ -172,6 +172,7 @@ class ArithmeticCPUKernel : public LiteKernel {
int DoArithmetic(int task_id);
private:
void FreeTileData();
int thread_count_;
float *tile_data0_ = nullptr;
float *tile_data1_ = nullptr;
......
......@@ -27,12 +27,11 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int ArithmeticSelfCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
if (!InferShapeDone()) {
return RET_OK;
}
int ret = ReSize();
return ret;
return ReSize();
}
int ArithmeticSelfCPUKernel::ReSize() {
......@@ -74,7 +73,7 @@ int ArithmeticSelfCPUKernel::DoArithmeticSelf(int task_id) {
int ArithmeticSelfCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_tensor = inputs_.at(0);
......
......@@ -28,7 +28,18 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_BiasAdd;
namespace mindspore::kernel {
int BiasCPUKernel::ReSize() { return RET_OK; }
int BiasCPUKernel::ReSize() {
auto dims = inputs_[0]->shape();
MS_ASSERT(dims.size() <= 5);
bias_param_->ndim_ = dims.size();
for (int i = 0; i < bias_param_->ndim_; i++) {
bias_param_->in_shape0_[i] = dims[i];
bias_param_->in_shape1_[i] = 1;
bias_param_->out_shape_[i] = dims[i];
}
bias_param_->in_shape1_[bias_param_->ndim_ - 1] = dims[bias_param_->ndim_ - 1];
return RET_OK;
}
int BiasCPUKernel::Run() {
auto prepare_ret = Prepare();
......@@ -49,20 +60,11 @@ int BiasCPUKernel::Run() {
}
int BiasCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
if (!InferShapeDone()) {
return RET_OK;
}
auto dims = inputs_[0]->shape();
MS_ASSERT(dims.size() <= 5);
bias_param_->ndim_ = dims.size();
for (int i = 0; i < bias_param_->ndim_; i++) {
bias_param_->in_shape0_[i] = dims[i];
bias_param_->in_shape1_[i] = 1;
bias_param_->out_shape_[i] = dims[i];
}
bias_param_->in_shape1_[bias_param_->ndim_ - 1] = dims[bias_param_->ndim_ - 1];
return RET_OK;
return ReSize();
}
kernel::LiteKernel *CpuBiasFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
......
......@@ -25,12 +25,7 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_BroadcastTo;
namespace mindspore::kernel {
int BroadcastToCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
int BroadcastToCPUKernel::ReSize() {
auto input_shape = inputs_[0]->shape();
for (size_t i = 0; i < input_shape.size(); ++i) {
shape_info_.input_shape_[i] = input_shape[i];
......@@ -45,6 +40,14 @@ int BroadcastToCPUKernel::Init() {
return RET_OK;
}
int BroadcastToCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int BroadcastToCPUKernel::Run() {
auto prepare_ret = Prepare();
if (prepare_ret != RET_OK) {
......
......@@ -31,7 +31,7 @@ class BroadcastToCPUKernel : public LiteKernel {
~BroadcastToCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override;
private:
......
......@@ -41,10 +41,13 @@ int CastRun(int thread_id, LiteParallelGroupEnv *penv, void *cdata) {
} // namespace
int CastCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int CastCPUKernel::ReSize() {
data_num_ = inputs_[0]->ElementsNum();
if (data_num_ == 0) {
return RET_OK;
......
......@@ -25,14 +25,12 @@ class CastCPUKernel : public LiteKernel {
CastCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
opParameter->thread_num_ = ctx->thread_num_;
}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~CastCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; };
int ReSize() override;
int Run() override;
int DoCast(int thread_id);
......
......@@ -29,30 +29,18 @@ using mindspore::schema::PrimitiveType_Concat;
namespace mindspore::kernel {
int ConcatCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
auto ret = ConcatBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
schema::Format input0_format = inputs_[0]->GetFormat();
bool need_convert_format = false;
for (size_t i = 1; i < inputs_.size(); ++i) {
if (inputs_[i]->GetFormat() != input0_format) {
need_convert_format = true;
}
}
if (!need_convert_format) {
outputs_[0]->SetFormat(input0_format);
if (!InferShapeDone()) {
return RET_OK;
}
MS_LOG(ERROR) << "All input format should be the same!";
return RET_ERROR;
return ReSize();
}
int ConcatCPUKernel::ReSize() { return RET_OK; }
int ConcatCPUKernel::ReSize() { return ConcatBaseCPUKernel::ReSize(); }
int ConcatCPUKernel::Run() {
auto prepare_ret = Prepare();
......
......@@ -44,9 +44,7 @@ int DepthToSpaceCPUKernel::Init() {
return ReSize();
}
int DepthToSpaceCPUKernel::ReSize() {
return DepthToSpaceBaseCPUKernel::ReSize();
}
int DepthToSpaceCPUKernel::ReSize() { return DepthToSpaceBaseCPUKernel::ReSize(); }
int DepthToSpaceCPUKernel::Run() {
auto prepare_ret = Prepare();
......
......@@ -32,6 +32,7 @@ int EluCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
......
......@@ -28,10 +28,7 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Prelu;
namespace mindspore::kernel {
int PReluCPUKernel::Init() {
prelu_param_->op_parameter_.thread_num_ = thread_count_;
return RET_OK;
}
int PReluCPUKernel::Init() { return RET_OK; }
int PReluCPUKernel::DoExcute(int task_id) {
PRelu(input_data, output_data, prelu_param_, task_id);
......
......@@ -38,8 +38,8 @@ int ReshapeCPUKernel::ReSize() { return RET_OK; }
int ReshapeCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_ptr = inputs_.at(kInputIndex)->Data();
auto output_ptr = outputs_.at(kOutputIndex)->Data();
......
......@@ -29,7 +29,19 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Scale;
namespace mindspore::kernel {
void ScaleCPUKernel::FreeTmpBuffer() {
if (scale_ != nullptr) {
free(scale_);
scale_ = nullptr;
}
if (offset_ != nullptr) {
free(offset_);
offset_ = nullptr;
}
}
int ScaleCPUKernel::InitScaleOffset() {
FreeTmpBuffer();
auto param = reinterpret_cast<ScaleParameter *>(opParameter);
auto scale_tensor = inputs_.at(1);
float *scale_ptr = reinterpret_cast<float *>(inputs_.at(1)->Data());
......@@ -91,15 +103,18 @@ int ScaleCPUKernel::InitParameter() {
}
int ScaleCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
if (inputs_.size() < 2 || inputs_.size() > 3) {
MS_LOG(ERROR) << "inputs to Scale operator should be 2 or 3, but " << inputs_.size() << " is given.";
return RET_ERROR;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ScaleCPUKernel::ReSize() {
auto ret = InitParameter();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale fp32 InitParameter failed.";
......@@ -114,8 +129,6 @@ int ScaleCPUKernel::Init() {
return RET_OK;
}
int ScaleCPUKernel::ReSize() { return RET_OK; }
int ScaleCPUKernel::Scale(int task_id) {
auto ret =
DoScale(input_ptr_, output_ptr_, scale_, offset_, task_id, reinterpret_cast<ScaleParameter *>(opParameter));
......@@ -140,8 +153,8 @@ int ScaleRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int ScaleCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto in_tensor = inputs_.front();
input_ptr_ = reinterpret_cast<float *>(in_tensor->Data());
......@@ -157,7 +170,7 @@ int ScaleCPUKernel::Run() {
MS_LOG(ERROR) << "Scale error error_code[" << ret << "]";
return RET_ERROR;
}
FreeTmpBuffer();
return RET_OK;
}
......
......@@ -24,13 +24,13 @@ namespace mindspore::kernel {
class ScaleCPUKernel : public LiteKernel {
public:
explicit ScaleCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
ScaleCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
opParameter->thread_num_ = ctx->thread_num_;
}
~ScaleCPUKernel() override = default;
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~ScaleCPUKernel() {
FreeTmpBuffer();
}
int Init() override;
int ReSize() override;
......@@ -40,6 +40,7 @@ class ScaleCPUKernel : public LiteKernel {
int Scale(int task_id);
private:
void FreeTmpBuffer();
float *input_ptr_;
float *scale_;
float *offset_;
......
......@@ -37,11 +37,14 @@ constexpr int kScatterIndicesIndex = 1;
constexpr int kScatterUpdateIndex = 2;
} // namespace
int ScatterNDCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
if (!InferShapeDone()) {
return RET_OK;
}
auto shape = inputs_.at(kScatterShapeIndex);
return ReSize();
}
int ScatterNDCPUKernel::ReSize() {
auto shape = inputs_.at(kScatterShapeIndex);
auto indices = inputs_.at(kScatterIndicesIndex);
auto update = inputs_.at(kScatterUpdateIndex);
......@@ -116,13 +119,11 @@ int ScatterNDCPUKernel::Init() {
output_unit_offsets_.push_back(tmp_stride);
}
thread_n_num_ = MSMIN(thread_num_, num_unit_);
thread_n_num_ = MSMIN(opParameter->thread_num_, num_unit_);
thread_n_stride_ = UP_DIV(num_unit_, thread_n_num_);
return RET_OK;
}
int ScatterNDCPUKernel::ReSize() { return 0; }
int ScatterNDCPUKernel::ScatterND(int task_id) {
int num_unit_thread = MSMIN(thread_n_stride_, num_unit_ - task_id * thread_n_stride_);
if (num_unit_thread <= 0) {
......@@ -152,8 +153,8 @@ int ScatterNDRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int ScatterNDCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
ret = LiteBackendParallelLaunch(ScatterNDRun, this, thread_n_num_);
if (ret != RET_OK) {
......
......@@ -28,7 +28,7 @@ class ScatterNDCPUKernel : public LiteKernel {
explicit ScatterNDCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_num_(ctx->thread_num_) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~ScatterNDCPUKernel() override = default;
int Init() override;
......@@ -37,7 +37,6 @@ class ScatterNDCPUKernel : public LiteKernel {
int ScatterND(int task_id);
private:
int thread_num_;
int thread_n_num_;
int thread_n_stride_;
int num_unit_;
......
......@@ -37,7 +37,7 @@ int ShapeCPUKernel::ReSize() { return RET_OK; }
int ShapeCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return RET_ERROR;
}
auto out_tensor = outputs_.front();
......
......@@ -25,17 +25,15 @@ namespace mindspore::kernel {
class ShapeCPUKernel : public LiteKernel {
public:
explicit ShapeCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
ShapeCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~ShapeCPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
private:
};
} // namespace mindspore::kernel
......
......@@ -39,11 +39,7 @@ int SliceLaunch(int thread_id, LiteParallelGroupEnv *penv, void *cdata) {
}
} // namespace
int SliceCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
int SliceCPUKernel::ReSize() {
auto *param = reinterpret_cast<SliceParameter *>(opParameter);
auto input_shape = inputs_[0]->shape();
if (input_shape.size() != param->param_length_) {
......@@ -59,10 +55,16 @@ int SliceCPUKernel::Init() {
for (size_t i = 0; i < input_shape.size(); ++i) {
param->shape_[i] = input_shape[i];
}
outputs_[0]->SetFormat(inputs_[0]->GetFormat());
return RET_OK;
}
int SliceCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int SliceCPUKernel::SliceParallelRun(int thread_id) {
const float *input_data = reinterpret_cast<const float *>(inputs_[0]->Data());
float *output_data = reinterpret_cast<float *>(outputs_[0]->Data());
......@@ -74,8 +76,8 @@ int SliceCPUKernel::SliceParallelRun(int thread_id) {
int SliceCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
SliceParameter *param = reinterpret_cast<SliceParameter *>(opParameter);
for (int i = 0; i < param->param_length_; ++i) {
......@@ -111,12 +113,8 @@ kernel::LiteKernel *CpuSliceFp32KernelCreator(const std::vector<lite::tensor::Te
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
return nullptr;
}
if (ctx == nullptr) {
MS_LOG(ERROR) << "Input context is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_Slice);
op_parameter->thread_num_ = ctx->thread_num_;
auto *kernel = new (std::nothrow) SliceCPUKernel(op_parameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new SliceCPUKernel fail!";
......
......@@ -29,7 +29,7 @@ class SliceCPUKernel : public LiteKernel {
~SliceCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override;
int SliceParallelRun(int thread_id);
};
......
......@@ -30,13 +30,22 @@ using mindspore::schema::PrimitiveType_SoftMax;
namespace mindspore::kernel {
int SoftmaxCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
auto ret = SoftmaxBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
if (!InferShapeDone()) {
return RET_OK;
}
SoftmaxBaseCPUKernel::Init();
return ReSize();
}
// malloc tmp buffer
int SoftmaxCPUKernel::ReSize() {
auto ret = SoftmaxBaseCPUKernel::ReSize();
if (ret != RET_OK) {
return ret;
}
auto n_dim = softmax_param_->n_dim_;
auto axis = softmax_param_->axis_;
if (axis == -1) {
......@@ -52,17 +61,18 @@ int SoftmaxCPUKernel::Init() {
for (int i = axis + 1; i < n_dim; i++) {
in_plane_size *= in_shape[i];
}
if (sum_data_ != nullptr) {
free(sum_data_);
}
sum_data_ = reinterpret_cast<float *>(malloc(out_plane_size * in_plane_size * sizeof(float)));
memset(sum_data_, 0, out_plane_size * in_plane_size * sizeof(float));
return RET_OK;
}
int SoftmaxCPUKernel::ReSize() { return RET_OK; }
int SoftmaxCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return RET_ERROR;
}
auto input_ptr = reinterpret_cast<float *>(inputs_.at(kInputIndex)->Data());
......
......@@ -25,20 +25,13 @@
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_FORMAT_ERR;
using mindspore::lite::RET_OK;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OP_EXECUTE_FAILURE;
using mindspore::schema::PrimitiveType_SpaceToBatch;
namespace mindspore::kernel {
int SpaceToBatchCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
if (inputs_[0]->GetFormat() != schema::Format_NHWC) {
MS_LOG(ERROR) << "space_to_batch only support NHWC now!";
return RET_FORMAT_ERR;
}
SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->opParameter);
for (int i = 0; i < SPACE_TO_BATCH_PADDINGS_SIZE; ++i) {
if (param->paddings_[i] != 0) {
......@@ -48,6 +41,18 @@ int SpaceToBatchCPUKernel::Init() {
}
param->n_dims_ = DIMENSION_4D;
param->n_space_dims_ = SPACE_TO_BATCH_BLOCK_SIZES_SIZE;
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int SpaceToBatchCPUKernel::ReSize() {
if (inputs_[0]->GetFormat() != schema::Format_NHWC) {
MS_LOG(ERROR) << "space_to_batch only support NHWC now!";
return RET_FORMAT_ERR;
}
SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->opParameter);
param->num_elements_ = EnumElement(param->in_shape_, param->n_dims_);
param->num_elements_padded_ = EnumElement(param->padded_in_shape_, param->n_dims_);
return RET_OK;
......@@ -56,8 +61,8 @@ int SpaceToBatchCPUKernel::Init() {
int SpaceToBatchCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input = inputs_[0];
auto output = outputs_[0];
......@@ -67,14 +72,19 @@ int SpaceToBatchCPUKernel::Run() {
float *tmp_space[3] = {nullptr, nullptr, nullptr};
if (param->need_paddings_) {
tmp_space[0] = reinterpret_cast<float *>(malloc(param->num_elements_padded_ * sizeof(float)));
(void)memset(tmp_space[0], 0, param->num_elements_padded_);
tmp_space[1] = reinterpret_cast<float *>(malloc(param->num_elements_padded_ * sizeof(float)));
(void)memset(tmp_space[1], 0, param->num_elements_padded_);
tmp_space[2] = reinterpret_cast<float *>(malloc(param->num_elements_padded_ * sizeof(float)));
(void)memset(tmp_space[2], 0, param->num_elements_padded_);
for (int i = 0; i < 3; ++i) {
tmp_space[i]
= reinterpret_cast<float *>(context_->allocator->Malloc(param->num_elements_padded_ * sizeof(float)));
(void)memset(tmp_space[i], 0, param->num_elements_padded_ * sizeof(float));
if (tmp_space[i] == nullptr) {
MS_LOG(ERROR) << "malloc tmp buffer fail!";
return RET_ERROR;
}
}
ret = SpaceToBatch(input_ptr_, output_ptr_, *param, tmp_space);
for (int i = 0; i < 3; ++i) {
context_->allocator->Free(tmp_space);
}
} else {
ret = SpaceToBatch(input_ptr_, output_ptr_, *param, tmp_space);
}
......
......@@ -30,7 +30,7 @@ class SpaceToBatchCPUKernel : public LiteKernel {
~SpaceToBatchCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override;
private:
......
......@@ -32,22 +32,26 @@ using mindspore::schema::PrimitiveType_SpaceToDepth;
namespace mindspore::kernel {
int SpaceToDepthCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
if (inputs_[0]->GetFormat() != schema::Format_NHWC) {
MS_LOG(ERROR) << "space_to_depth only support NHWC now!";
return RET_FORMAT_ERR;
}
SpaceToDepthParameter *param = reinterpret_cast<SpaceToDepthParameter *>(opParameter);
if (param->block_size_ <= 0) {
MS_LOG(ERROR) << "Input block_size should > 0!";
return RET_PARAM_INVALID;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int SpaceToDepthCPUKernel::ReSize() {
if (inputs_[0]->GetFormat() != schema::Format_NHWC) {
MS_LOG(ERROR) << "space_to_depth only support NHWC now!";
return RET_FORMAT_ERR;
}
num_unit_ = static_cast<int>(inputs_[0]->shape().at(kNHWC_H));
thread_h_num_ = MSMIN(thread_num_, num_unit_);
thread_h_num_ = MSMIN(opParameter->thread_num_, num_unit_);
thread_h_stride_ = UP_DIV(num_unit_, thread_h_num_);
return RET_OK;
}
......@@ -83,8 +87,8 @@ int SpaceToDepthRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int SpaceToDepthCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
input_ptr_ = reinterpret_cast<float *>(inputs_[0]->Data());
output_ptr_ = reinterpret_cast<float *>(outputs_[0]->Data());
......
......@@ -26,16 +26,15 @@ class SpaceToDepthCPUKernel : public LiteKernel {
SpaceToDepthCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_num_(ctx->thread_num_) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~SpaceToDepthCPUKernel() = default;
int SpaceToDepth(int task_id);
int Init() override;
int ReSize() override { return 0; };
int ReSize() override;
int Run() override;
private:
int thread_num_;
int thread_h_stride_;
int thread_h_num_;
int num_unit_;
......
......@@ -31,16 +31,21 @@ using mindspore::schema::PrimitiveType_Split;
namespace mindspore::kernel {
int SplitCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
auto ret = SplitBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
SplitBaseCPUKernel::Init();
output_ptr_.resize(param->num_split_);
return RET_OK;
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int SplitCPUKernel::ReSize() { return RET_OK; }
int SplitCPUKernel::ReSize() { return SplitBaseCPUKernel::ReSize(); }
int SplitCPUKernel::Split(int task_id) {
int num_unit_thread = MSMIN(thread_n_stride_, num_unit_ - task_id * thread_n_stride_);
......@@ -69,15 +74,15 @@ int SplitRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int SplitCPUKernel::Run() {
auto ret = Prepare();
auto in_tensor = inputs_.front();
input_ptr_ = reinterpret_cast<float *>(in_tensor->Data());
for (int i = 0; i < output_ptr_.size(); i++) {
output_ptr_[i] = reinterpret_cast<float *>(outputs_.at(i)->Data());
}
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
}
auto in_tensor = inputs_.front();
input_ptr_ = reinterpret_cast<float *>(in_tensor->Data());
for (int i = 0; i < param->num_split_; i++) {
output_ptr_.push_back(reinterpret_cast<float *>(outputs_.at(i)->Data()));
}
ret = LiteBackendParallelLaunch(SplitRun, this, thread_n_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale error error_code[" << ret << "]";
......
......@@ -39,8 +39,8 @@ int SqueezeCPUKernel::ReSize() { return RET_OK; }
int SqueezeCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_ptr = reinterpret_cast<float *>(inputs_.front()->Data());
auto output_ptr = reinterpret_cast<float *>(outputs_.front()->Data());
......
......@@ -26,55 +26,26 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Stack;
namespace mindspore::kernel {
int StackCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
int StackCPUKernel::ReSize() {
StackParameter *param = reinterpret_cast<StackParameter *>(opParameter);
auto input0_shape = inputs_[0]->shape();
axis_ = param->axis_ < 0 ? param->axis_ + input0_shape.size() : param->axis_;
schema::Format input0_format = inputs_[0]->GetFormat();
bool need_convert_format = false;
for (size_t i = 1; i < inputs_.size(); ++i) {
if (inputs_[i]->GetFormat() != input0_format) {
need_convert_format = true;
}
}
if (!need_convert_format) {
outputs_[0]->SetFormat(input0_format);
return RET_OK;
}
int StackCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
for (size_t i = 0; i < inputs_.size(); ++i) {
if (inputs_[i]->GetFormat() != schema::Format_NHWC) {
convert_functions_[i] = LayoutTransform(inputs_[i]->data_type(), inputs_[i]->GetFormat(), schema::Format_NHWC);
if (convert_functions_[i] == nullptr) {
MS_LOG(ERROR) << "Can not convert format " << inputs_[i]->GetFormat() << " to " << schema::Format_NHWC;
return RET_ERROR;
}
size_t packed_input_size =
inputs_[i]->Channel() * inputs_[i]->Batch() * inputs_[i]->Height() * inputs_[i]->Width();
packed_inputs_[i] = reinterpret_cast<float *>(malloc(packed_input_size * sizeof(float)));
if (packed_inputs_[i] == nullptr) {
MS_LOG(ERROR) << "malloc memory fail!";
return RET_ERROR;
}
memset(packed_inputs_[i], 0, packed_input_size * sizeof(float));
} else {
convert_functions_[i] = nullptr;
packed_inputs_[i] = nullptr;
}
}
outputs_[0]->SetFormat(schema::Format_NHWC);
return RET_OK;
return ReSize();
}
int StackCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
size_t inputs_num = inputs_.size();
auto input0_shape = inputs_[0]->shape();
......@@ -82,14 +53,8 @@ int StackCPUKernel::Run() {
float *inputs[inputs_num];
for (size_t i = 0; i < inputs_num; ++i) {
inputs[i] = reinterpret_cast<float *>(inputs_[i]->Data());
if (convert_functions_[i] != nullptr) {
convert_functions_[i](inputs[i], packed_inputs_[i], inputs_[i]->Batch(),
inputs_[i]->Height() * inputs_[i]->Width(), inputs_[i]->Channel());
} else {
packed_inputs_[i] = inputs[i];
}
}
DoStack(packed_inputs_.data(), inputs_num, input0_shape.data(), input0_shape.size(), axis_, output_data);
DoStack(inputs, inputs_num, input0_shape.data(), input0_shape.size(), axis_, output_data);
return RET_OK;
}
......
......@@ -19,35 +19,22 @@
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/base/layout_transform.h"
namespace mindspore::kernel {
class StackCPUKernel : public LiteKernel {
public:
StackCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive),
convert_functions_(inputs_.size(), nullptr),
packed_inputs_(inputs_.size(), nullptr) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~StackCPUKernel() {
for (size_t i = 0; i < packed_inputs_.size(); ++i) {
if (packed_inputs_[i] != nullptr) {
free(packed_inputs_[i]);
packed_inputs_[i] = nullptr;
}
}
}
~StackCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int ReSize() override;
int Run() override;
private:
int axis_;
std::vector<LayoutConvertor> convert_functions_;
std::vector<float *> packed_inputs_;
};
} // namespace mindspore::kernel
......
......@@ -32,10 +32,13 @@ constexpr int kTransposeInputNum = 1;
constexpr int kTransposeOutputNum = 1;
} // namespace
int TransposeCPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int TransposeCPUKernel::ReSize() {
auto &inTensor = inputs_.front();
auto &outTensor = outputs_.front();
auto param = reinterpret_cast<TransposeParameter *>(opParameter);
......@@ -51,13 +54,11 @@ int TransposeCPUKernel::Init() {
return RET_OK;
}
int TransposeCPUKernel::ReSize() { return RET_OK; }
int TransposeCPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
MS_ASSERT(inputs_.size() == TransposeInputNum);
MS_ASSERT(outputs_.size() == TransposeOutputNum);
......
......@@ -48,7 +48,7 @@ int ArithmeticsInt8Launch(int thread_id, LiteParallelGroupEnv *penv, void *cdata
}
} // namespace
ArithmeticInt8CPUKernel::~ArithmeticInt8CPUKernel() {
void ArithmeticInt8CPUKernel::FreeTileData() {
auto param = reinterpret_cast<ArithmeticParameter *>(opParameter);
if (!param->broadcasting_) {
return;
......@@ -72,6 +72,10 @@ ArithmeticInt8CPUKernel::~ArithmeticInt8CPUKernel() {
tile_data1_ = nullptr;
}
ArithmeticInt8CPUKernel::~ArithmeticInt8CPUKernel() {
FreeTileData();
}
int ArithmeticInt8CPUKernel::Init() {
switch (opParameter->type_) {
case PrimitiveType_Equal:
......@@ -97,6 +101,15 @@ int ArithmeticInt8CPUKernel::Init() {
arithmetic_run_ = nullptr;
return RET_PARAM_INVALID;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ArithmeticInt8CPUKernel::ReSize() {
FreeTileData();
auto data_size = outputs_[0]->Size();
auto param = reinterpret_cast<ArithmeticParameter *>(opParameter);
if (param->broadcasting_) {
......@@ -114,8 +127,6 @@ int ArithmeticInt8CPUKernel::Init() {
return RET_OK;
}
int ArithmeticInt8CPUKernel::ReSize() { return RET_OK; }
int ArithmeticInt8CPUKernel::DoArithmetic(int thread_id) {
auto input0_data = reinterpret_cast<int8_t *>(inputs_[0]->Data());
auto input1_data1 = reinterpret_cast<int8_t *>(inputs_[1]->Data());
......@@ -123,8 +134,8 @@ int ArithmeticInt8CPUKernel::DoArithmetic(int thread_id) {
auto element_num = outputs_[0]->ElementsNum();
auto param = reinterpret_cast<ArithmeticParameter *>(opParameter);
if (param->broadcasting_ && arithmetic_run_ != nullptr) {
MS_ASSERT(thread_count_ != 0);
int stride = UP_DIV(element_num, thread_count_);
MS_ASSERT(opParameter->thread_num_ != 0);
int stride = UP_DIV(element_num, opParameter->thread_num_);
int count = MSMIN(stride, element_num - stride * thread_id);
if (count <= 0) {
return RET_OK;
......@@ -150,13 +161,18 @@ int ArithmeticInt8CPUKernel::DoArithmetic(int thread_id) {
}
int ArithmeticInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto param = reinterpret_cast<ArithmeticParameter *>(opParameter);
if (param->broadcasting_) {
auto input_data0 = reinterpret_cast<int8_t *>(inputs_[0]->Data());
auto input_data1 = reinterpret_cast<int8_t *>(inputs_[1]->Data());
TileDimensionsInt8(input_data0, input_data1, tile_data0_, tile_data1_, param);
}
int error_code = LiteBackendParallelLaunch(ArithmeticsInt8Launch, this, thread_count_);
int error_code = LiteBackendParallelLaunch(ArithmeticsInt8Launch, this, opParameter->thread_num_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "Arithmetic launch function fail! ret: " << error_code;
return RET_ERROR;
......
......@@ -29,7 +29,7 @@ class ArithmeticInt8CPUKernel : public LiteKernel {
ArithmeticInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_), context_(ctx) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~ArithmeticInt8CPUKernel();
int Init() override;
......@@ -38,10 +38,10 @@ class ArithmeticInt8CPUKernel : public LiteKernel {
int DoArithmetic(int thread_id);
private:
void FreeTileData();
int thread_count_;
int8_t *tile_data0_;
int8_t *tile_data1_;
const lite::Context *context_;
ArithmeticRunInt8 arithmetic_run_;
};
} // namespace mindspore::kernel
......
......@@ -99,8 +99,8 @@ int ArithmeticSelfInt8CPUKernel::DoArithmeticSelf(int task_id) {
int ArithmeticSelfInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_tensor = inputs_.at(0);
auto out_tensor = outputs_.at(0);
......
......@@ -51,8 +51,8 @@ int BatchToSpaceInt8CPUKernel::ReSize() {
int BatchToSpaceInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input = inputs_[0];
auto output = outputs_[0];
......
......@@ -27,32 +27,8 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int ConcatInt8CPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
ConcatBaseCPUKernel::Init();
auto input_num = inputs_.size();
concat_param_->input_num_ = input_num;
concat_param_->input_shapes_ = reinterpret_cast<const int **>(ctx_->allocator->Malloc(sizeof(int *) * input_num));
for (size_t i = 0; i < input_num; i++) {
concat_param_->input_shapes_[i] = reinterpret_cast<const int *>(inputs_.at(i)->shape().data());
}
before_axis_size = 1;
for (int i = 0; i < axis_; i++) {
before_axis_size *= outputs_.at(kOutputIndex)->DimensionSize(i);
}
int64_t after_axis_size = 1;
auto output_tensor = outputs_.at(kOutputIndex);
int output_dim = output_tensor->shape().size();
concat_param_->output_shapes_ = output_tensor->shape().data();
for (size_t i = axis_ + 1; i < output_dim; i++) {
after_axis_size *= concat_param_->output_shapes_[i];
}
concat_param_->after_axis_size = after_axis_size;
concat_param_->quant_arg_.in_args_ =
reinterpret_cast<QuantArg *>(ctx_->allocator->Malloc(sizeof(QuantArg) * input_num));
if (concat_param_->quant_arg_.in_args_ == nullptr) {
......@@ -66,23 +42,56 @@ int ConcatInt8CPUKernel::Init() {
concat_param_->quant_arg_.in_args_[i].zp_ = quant_args.front().zeroPoint;
}
auto output_tensor = outputs_.at(kOutputIndex);
auto quant_args = output_tensor->GetQuantParams();
concat_param_->quant_arg_.out_args_.scale_ = quant_args.front().scale;
concat_param_->quant_arg_.out_args_.zp_ = quant_args.front().zeroPoint;
concat_param_->quant_arg_.output_activation_min_ = std::numeric_limits<int8_t>::min();
concat_param_->quant_arg_.output_activation_max_ = std::numeric_limits<int8_t>::max();
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ConcatInt8CPUKernel::ReSize() {
auto ret = ConcatBaseCPUKernel::ReSize();
if (ret != RET_OK) {
return ret;
}
if (concat_param_->input_shapes_ != nullptr) {
ctx_->allocator->Free(concat_param_->input_shapes_);
}
auto input_num = inputs_.size();
concat_param_->input_num_ = input_num;
concat_param_->input_shapes_ = reinterpret_cast<const int **>(ctx_->allocator->Malloc(sizeof(int *) * input_num));
for (size_t i = 0; i < input_num; i++) {
concat_param_->input_shapes_[i] = reinterpret_cast<const int *>(inputs_.at(i)->shape().data());
}
before_axis_size = 1;
for (int i = 0; i < axis_; i++) {
before_axis_size *= outputs_.at(kOutputIndex)->DimensionSize(i);
}
int64_t after_axis_size = 1;
auto output_tensor = outputs_.at(kOutputIndex);
int output_dim = output_tensor->shape().size();
concat_param_->output_shapes_ = output_tensor->shape().data();
for (size_t i = axis_ + 1; i < output_dim; i++) {
after_axis_size *= concat_param_->output_shapes_[i];
}
concat_param_->after_axis_size = after_axis_size;
return RET_OK;
}
int ConcatInt8CPUKernel::ReSize() { return 0; }
int ConcatInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_num = concat_param_->input_num_;
......
......@@ -27,37 +27,45 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int CropInt8CPUKernel::Init() {
CropBaseCPUKernel::Init();
auto ret = CropBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
auto *input_tensor = inputs_.at(kInputIndex);
auto in_quant_args = input_tensor->GetQuantParams();
crop_para_->quant_arg.in_args_.scale_ = in_quant_args.front().scale;
crop_para_->quant_arg.in_args_.zp_ = in_quant_args.front().zeroPoint;
auto input_dim = input_tensor->shape().size();
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
crop_para_->input_dim_ = input_dim;
auto *out_tensor = outputs_.at(kOutputIndex);
auto out_quant_args = out_tensor->GetQuantParams();
crop_para_->quant_arg.out_args_.scale_ = out_quant_args.front().scale;
crop_para_->quant_arg.out_args_.zp_ = out_quant_args.front().zeroPoint;
crop_para_->in_shape_ = input_tensor->shape().data();
crop_para_->out_shape_ = out_tensor->shape().data();
crop_para_->quant_arg.output_activation_max_ = std::numeric_limits<int8_t>::max();
crop_para_->quant_arg.output_activation_min_ = std::numeric_limits<int8_t>::min();
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int CropInt8CPUKernel::ReSize() {
auto *input_tensor = inputs_.at(kInputIndex);
crop_para_->in_shape_ = input_tensor->shape().data();
auto *out_tensor = outputs_.at(kOutputIndex);
crop_para_->out_shape_ = out_tensor->shape().data();
auto input_dim = input_tensor->shape().size();
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
crop_para_->input_dim_ = input_dim;
PadOffset(input_dim, crop_para_);
return RET_OK;
}
int CropInt8CPUKernel::ReSize() { return 0; }
int CropInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
ret = LiteBackendParallelLaunch(CropInt8Run, this, thread_count_);
return ret;
......
......@@ -55,8 +55,8 @@ int DepthToSpaceInt8CPUKernel::ReSize() {
int DepthToSpaceInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input = inputs_[0];
auto output = outputs_[0];
......
......@@ -28,11 +28,6 @@ using mindspore::schema::ActivationType_RELU;
namespace mindspore::kernel {
int ReluXInt8CPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
lite::tensor::Tensor *input = inputs_.at(0);
lite::tensor::Tensor *output = outputs_.at(0);
MS_ASSERT(input);
......@@ -56,7 +51,7 @@ int ReluXInt8CPUKernel::DoActivation(int task_id) {
auto output_addr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
auto length = inputs_.at(0)->ElementsNum();
int stride = UP_DIV(length, thread_count_);
int stride = UP_DIV(length, opParameter->thread_num_);
int count = MSMIN(stride, length - stride * task_id);
ReluXInt8(input_addr + stride * task_id, count, output_addr + stride * task_id, &quant_arg_);
......@@ -76,10 +71,10 @@ int ReluXInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int ReluXInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
int error_code = LiteBackendParallelLaunch(ReluXInt8Run, this, thread_count_);
int error_code = LiteBackendParallelLaunch(ReluXInt8Run, this, opParameter->thread_num_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "ReluXInt8Run function error error_code[" << error_code << "]";
return RET_ERROR;
......
......@@ -28,7 +28,7 @@ class ReluXInt8CPUKernel : public LiteKernel {
ReluXInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
type_ = (reinterpret_cast<ActivationParameter *>(parameter))->type_;
}
~ReluXInt8CPUKernel() override = default;
......@@ -41,7 +41,6 @@ class ReluXInt8CPUKernel : public LiteKernel {
ReluXQuantArg quant_arg_;
private:
int thread_count_;
int type_;
};
......
......@@ -27,10 +27,6 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int ReshapeInt8CPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
}
ReshapeBaseCPUKernel::Init();
auto *input_tensor = inputs_.at(kInputIndex);
auto in_quant_args = input_tensor->GetQuantParams();
......@@ -53,7 +49,7 @@ int ReshapeInt8CPUKernel::ReSize() { return 0; }
int ReshapeInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
MS_ASSERT(inputs_.size() == 1);
......@@ -62,9 +58,9 @@ int ReshapeInt8CPUKernel::Run() {
output_data_ = static_cast<int8_t *>(outputs_.at(kOutputIndex)->Data());
elements_num_ = inputs_.at(kInputIndex)->ElementsNum();
count_unit_ = thread_count_ > 1 ? UP_DIV(elements_num_, thread_count_) : elements_num_;
count_unit_ = opParameter->thread_num_ > 1 ? UP_DIV(elements_num_, opParameter->thread_num_) : elements_num_;
ret = LiteBackendParallelLaunch(ReshapeInt8Run, this, thread_count_);
ret = LiteBackendParallelLaunch(ReshapeInt8Run, this, opParameter->thread_num_);
return ret;
}
......
......@@ -40,7 +40,6 @@ class ReshapeInt8CPUKernel : public ReshapeBaseCPUKernel {
int DoExecute(int task_id);
private:
int thread_count_;
int64_t elements_num_;
int64_t count_unit_;
int8_t *input_data_ = nullptr;
......
......@@ -72,7 +72,7 @@ int SigmoidInt8CPUKernel::DoActivation(int task_id) {
auto output_addr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
auto length = inputs_.at(0)->ElementsNum();
int stride = UP_DIV(length, thread_count_);
int stride = UP_DIV(length, opParameter->thread_num_);
int count = MSMIN(stride, length - stride * task_id);
SigmoidInt8(input_addr + stride * task_id, count, output_addr + stride * task_id, &quant_arg_);
......@@ -92,10 +92,10 @@ int SigmoidInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int SigmoidInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
int error_code = LiteBackendParallelLaunch(SigmoidInt8Run, this, thread_count_);
int error_code = LiteBackendParallelLaunch(SigmoidInt8Run, this, opParameter->thread_num_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "SigmoidInt8Run function error error_code[" << error_code << "]";
return RET_ERROR;
......
......@@ -27,7 +27,7 @@ class SigmoidInt8CPUKernel : public LiteKernel {
SigmoidInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {}
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~SigmoidInt8CPUKernel() override = default;
int Init() override;
......@@ -36,7 +36,6 @@ class SigmoidInt8CPUKernel : public LiteKernel {
int DoActivation(int task_id);
private:
int thread_count_;
SigmoidQuantArg quant_arg_;
void MultiplierInt32ToInt16(int32_t input, int16_t *output);
};
......
......@@ -26,11 +26,10 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int SoftmaxInt8CPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
auto ret = SoftmaxBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
SoftmaxBaseCPUKernel::Init();
auto *input_tensor = inputs_.at(kInputIndex);
MS_ASSERT(input_tensor);
......@@ -46,18 +45,39 @@ int SoftmaxInt8CPUKernel::Init() {
quant_params_.out_quant_arg_.scale_ = out_quant_args.front().scale;
quant_params_.out_quant_arg_.zp_ = out_quant_args.front().zeroPoint;
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
void SoftmaxInt8CPUKernel::FreeTmpBuffer() {
if (exp_data_ != nullptr) {
free(exp_data_);
exp_data_ = nullptr;
}
if (sum_data_ != nullptr) {
free(sum_data_);
sum_data_ = nullptr;
}
}
int SoftmaxInt8CPUKernel::ReSize() {
auto ret = SoftmaxBaseCPUKernel::ReSize();
if (ret != RET_OK) {
return ret;
}
FreeTmpBuffer();
exp_data_ = reinterpret_cast<float *>(malloc(softmax_param_->element_size_ * sizeof(float)));
int inner_size = 1;
for (int i = softmax_param_->axis_ + 1; i < softmax_param_->n_dim_; i++) {
inner_size *= softmax_param_->input_shape_[i];
}
exp_data_ = reinterpret_cast<float *>(malloc(softmax_param_->element_size_ * sizeof(float)));
sum_data_ = reinterpret_cast<float *>(malloc(inner_size * sizeof(float)));
return RET_OK;
}
int SoftmaxInt8CPUKernel::ReSize() { return RET_OK; }
int SoftmaxInt8CPUKernel::DoSoftmax(int task_id) {
MS_ASSERT(inputs_.size() == 1);
MS_ASSERT(outputs_.size() == 1);
......@@ -101,7 +121,7 @@ int SoftmaxRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int SoftmaxInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return RET_ERROR;
}
auto input_ptr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data());
......
......@@ -28,7 +28,9 @@ class SoftmaxInt8CPUKernel : public SoftmaxBaseCPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const lite::Primitive *primitive)
: SoftmaxBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~SoftmaxInt8CPUKernel() = default;
~SoftmaxInt8CPUKernel() {
FreeTmpBuffer();
}
int Init() override;
int ReSize() override;
......@@ -36,6 +38,7 @@ class SoftmaxInt8CPUKernel : public SoftmaxBaseCPUKernel {
int DoSoftmax(int task_id);
private:
void FreeTmpBuffer();
float *sum_data_;
float *exp_data_;
SoftmaxQuantArg quant_params_;
......
......@@ -28,21 +28,15 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int SplitInt8CPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
auto ret = SplitBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
SplitBaseCPUKernel::Init();
auto in_tensor = inputs_.at(kInputIndex);
input_ptr_ = reinterpret_cast<int8_t *>(in_tensor->Data());
for (int i = 0; i < param->num_split_; i++) {
output_ptr_.push_back(reinterpret_cast<int8_t *>(outputs_.at(i)->Data()));
}
auto in_quant_args = in_tensor->GetQuantParams();
param->quant_arg_.in_args_.scale_ = in_quant_args.front().scale;
param->quant_arg_.in_args_.zp_ = in_quant_args.front().zeroPoint;
MS_ASSERT(param->num_split_ == outputs_.size());
for (int i = 0; i < param->num_split_; i++) {
auto *out_tensor = outputs_.at(i);
......@@ -53,11 +47,14 @@ int SplitInt8CPUKernel::Init() {
param->quant_arg_.output_activation_max_ = std::numeric_limits<int8_t>::max();
param->quant_arg_.output_activation_min_ = std::numeric_limits<int8_t>::min();
if (!InferShapeDone()) {
return RET_OK;
}
return RET_OK;
return ReSize();
}
int SplitInt8CPUKernel::ReSize() { return RET_OK; }
int SplitInt8CPUKernel::ReSize() { return SplitBaseCPUKernel::ReSize(); }
int SplitInt8CPUKernel::Split(int task_id) {
int num_unit_thread = MSMIN(thread_n_stride_, num_unit_ - task_id * thread_n_stride_);
......@@ -90,6 +87,13 @@ int SplitInt8CPUKernel::Run() {
MS_LOG(ERROR) << "Prepare failed.";
return ret;
}
auto in_tensor = inputs_.at(kInputIndex);
input_ptr_ = reinterpret_cast<int8_t *>(in_tensor->Data());
MS_ASSERT(param->num_split_ == outputs_.size());
for (int i = 0; i < param->num_split_; i++) {
output_ptr_.push_back(reinterpret_cast<int8_t *>(outputs_.at(i)->Data()));
}
ret = LiteBackendParallelLaunch(SplitInt8Run, this, thread_n_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale error error_code[" << ret << "]";
......
......@@ -29,11 +29,10 @@ using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int SqueezeInt8CPUKernel::Init() {
if (context_->infer_shape_interrupt_ && !context_->running_) {
SetNeedReInit();
return RET_OK;
auto init_ret = SqueezeBaseCPUKernel::Init();
if (init_ret != RET_OK) {
return init_ret;
}
SqueezeBaseCPUKernel::Init();
quant_Squeeze_parm_ = new (std::nothrow) SqueezeQuantArg;
auto input_num = inputs_.size();
quant_Squeeze_parm_->input_num_ = input_num;
......@@ -52,6 +51,37 @@ int SqueezeInt8CPUKernel::Init() {
return RET_ERROR;
}
quant_Squeeze_parm_->axis_ = 0;
quant_Squeeze_parm_->in_quant_args_ = reinterpret_cast<QuantArg *>(malloc(sizeof(QuantArg) * input_num));
if (quant_Squeeze_parm_->in_quant_args_ == nullptr) {
MS_LOG(ERROR) << "Null pointer reference: quant_Squeeze_parm_->in_quant_args_.";
return RET_ERROR;
}
for (size_t i = 0; i < input_num; i++) {
auto *input_tensor = inputs_.at(i);
auto quant_args = input_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
quant_Squeeze_parm_->in_quant_args_[i].scale_ = quant_args.front().scale;
quant_Squeeze_parm_->in_quant_args_[i].zp_ = quant_args.front().zeroPoint;
}
MS_ASSERT(outputs_.size() == 1);
auto output_tensor = outputs_.at(0);
MS_ASSERT(output_tensor != nullptr);
auto quant_args = output_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
quant_Squeeze_parm_->out_quant_args_.scale_ = quant_args.front().scale;
quant_Squeeze_parm_->out_quant_args_.zp_ = quant_args.front().zeroPoint;
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int SqueezeInt8CPUKernel::ReSize() {
auto input_num = inputs_.size();
for (size_t i = 0; i < input_num; i++) {
auto *input_tensor = inputs_.at(i);
MS_ASSERT(input_tensor != nullptr);
......@@ -70,20 +100,6 @@ int SqueezeInt8CPUKernel::Init() {
quant_Squeeze_parm_->input_sizes_[i] *= input_shape;
}
}
quant_Squeeze_parm_->axis_ = 0;
quant_Squeeze_parm_->in_quant_args_ = reinterpret_cast<QuantArg *>(malloc(sizeof(QuantArg) * input_num));
if (quant_Squeeze_parm_->in_quant_args_ == nullptr) {
MS_LOG(ERROR) << "Null pointer reference: quant_Squeeze_parm_->in_quant_args_.";
return RET_ERROR;
}
for (size_t i = 0; i < input_num; i++) {
auto *input_tensor = inputs_.at(i);
auto quant_args = input_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
quant_Squeeze_parm_->in_quant_args_[i].scale_ = quant_args.front().scale;
quant_Squeeze_parm_->in_quant_args_[i].zp_ = quant_args.front().zeroPoint;
}
MS_ASSERT(outputs_.size() == 1);
auto output_tensor = outputs_.at(0);
......@@ -100,21 +116,13 @@ int SqueezeInt8CPUKernel::Init() {
quant_Squeeze_parm_->output_shape_ = new int[output_size];
::memcpy(quant_Squeeze_parm_->output_shape_, output_shape.data(), sizeof(int) * output_size);
auto quant_args = output_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
quant_Squeeze_parm_->out_quant_args_.scale_ = quant_args.front().scale;
quant_Squeeze_parm_->out_quant_args_.zp_ = quant_args.front().zeroPoint;
return RET_OK;
}
int SqueezeInt8CPUKernel::ReSize() { return 0; }
int SqueezeInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_dim = quant_Squeeze_parm_->input_num_;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册