Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
83573831
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
83573831
编写于
4月 09, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
4月 09, 2020
浏览文件
操作
浏览文件
下载
差异文件
!154 fix doc/comments issues
Merge pull request !154 from 万万没想到/I1DBA8
上级
0565e464
d9f7e56b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
116 addition
and
123 deletion
+116
-123
mindspore/common/initializer.py
mindspore/common/initializer.py
+1
-1
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+43
-43
mindspore/ops/operations/math_ops.py
mindspore/ops/operations/math_ops.py
+54
-51
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+17
-27
mindspore/train/serialization.py
mindspore/train/serialization.py
+1
-1
未找到文件。
mindspore/common/initializer.py
浏览文件 @
83573831
...
...
@@ -276,7 +276,7 @@ def initializer(init, shape=None, dtype=mstype.float32):
shape (Union[tuple, list, int]): A list of integers, a tuple of integers or an integer as the shape of
output. Default: None.
dtype (:class:`mindspore.dtype`): The type of data in initialized tensor. Default: m
styp
e.float32.
dtype (:class:`mindspore.dtype`): The type of data in initialized tensor. Default: m
indspor
e.float32.
Returns:
Tensor, initialized tensor.
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
83573831
...
...
@@ -62,7 +62,7 @@ class ExpandDims(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> expand_dims = ExpandDims()
>>> expand_dims =
P.
ExpandDims()
>>> output = expand_dims(input_tensor, 0)
"""
...
...
@@ -101,7 +101,7 @@ class DType(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> type = DType()(input_tensor)
>>> type =
P.
DType()(input_tensor)
"""
@
prim_attr_register
...
...
@@ -134,7 +134,7 @@ class SameTypeShape(PrimitiveWithInfer):
Examples:
>>> input_x = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> input_y = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> out = SameTypeShape()(input_x, input_y)
>>> out =
P.
SameTypeShape()(input_x, input_y)
"""
@
prim_attr_register
...
...
@@ -175,7 +175,7 @@ class Cast(PrimitiveWithInfer):
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
>>> input_x = Tensor(input_np)
>>> type_dst = mindspore.int32
>>> cast = Cast()
>>> cast =
P.
Cast()
>>> result = cast(input_x, type_dst)
>>> expect = input_np.astype(type_dst)
"""
...
...
@@ -227,7 +227,7 @@ class IsSubClass(PrimitiveWithInfer):
bool, the check result.
Examples:
>>> result = IsSubClass()(mindspore.int32, mindspore.intc)
>>> result =
P.
IsSubClass()(mindspore.int32, mindspore.intc)
"""
@
prim_attr_register
...
...
@@ -262,7 +262,7 @@ class IsInstance(PrimitiveWithInfer):
Examples:
>>> a = 1
>>> result = IsInstance()(a, mindspore.int32)
>>> result =
P.
IsInstance()(a, mindspore.int32)
"""
@
prim_attr_register
...
...
@@ -303,7 +303,7 @@ class Reshape(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> reshape = Reshape()
>>> reshape =
P.
Reshape()
>>> output = reshape(input_tensor, (3, 2))
"""
...
...
@@ -366,7 +366,7 @@ class Shape(Primitive):
Examples:
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
>>> shape = Shape()
>>> shape =
P.
Shape()
>>> output = shape(input_tensor)
"""
...
...
@@ -398,7 +398,7 @@ class Squeeze(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
>>> squeeze = Squeeze(2)
>>> squeeze =
P.
Squeeze(2)
>>> output = squeeze(input_tensor)
"""
...
...
@@ -450,7 +450,7 @@ class Transpose(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
>>> perm = (0, 2, 1)
>>> transpose = Transpose()
>>> transpose =
P.
Transpose()
>>> output = transpose(input_tensor, perm)
"""
...
...
@@ -504,10 +504,10 @@ class GatherV2(PrimitiveWithInfer):
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
Examples:
>>> params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
>>> indices = Tensor(np.array([1, 2]), mindspore.int32)
>>>
input_
params = Tensor(np.array([[1, 2, 7, 42], [3, 4, 54, 22], [2, 2, 55, 3]]), mindspore.float32)
>>> in
put_in
dices = Tensor(np.array([1, 2]), mindspore.int32)
>>> axis = 1
>>> out =
GatherV2()(params,
indices, axis)
>>> out =
P.GatherV2()(input_params, input_
indices, axis)
"""
@
prim_attr_register
...
...
@@ -556,7 +556,7 @@ class Split(PrimitiveWithInfer):
:math:`(y_1, y_2, ..., y_S)`.
Examples:
>>> split = Split(1, 2)
>>> split =
P.
Split(1, 2)
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
>>> output = split(x)
"""
...
...
@@ -606,7 +606,7 @@ class Rank(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> rank = Rank()
>>> rank =
P.
Rank()
>>> rank(input_tensor)
"""
...
...
@@ -640,7 +640,7 @@ class TruncatedNormal(PrimitiveWithInfer):
Examples:
>>> input_shape = Tensor(np.array([1, 2, 3]))
>>> truncated_normal = TruncatedNormal()
>>> truncated_normal =
P.
TruncatedNormal()
>>> output = truncated_normal(input_shape)
"""
...
...
@@ -681,7 +681,7 @@ class Size(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
>>> size = Size()
>>> size =
P.
Size()
>>> output = size(input_tensor)
"""
...
...
@@ -826,7 +826,7 @@ class TupleToArray(PrimitiveWithInfer):
Tensor, if the input tuple contain `N` numbers, then the output tensor shape is (N,).
Examples:
>>> type = TupleToArray()((1,2,3))
>>> type =
P.
TupleToArray()((1,2,3))
"""
@
prim_attr_register
...
...
@@ -861,7 +861,7 @@ class ScalarToArray(PrimitiveWithInfer):
Tensor. 0-D Tensor and the content is the input.
Examples:
>>> op = ScalarToArray()
>>> op =
P.
ScalarToArray()
>>> data = 1.0
>>> output = op(data)
"""
...
...
@@ -893,7 +893,7 @@ class ScalarToTensor(PrimitiveWithInfer):
Tensor. 0-D Tensor and the content is the input.
Examples:
>>> op = ScalarToTensor()
>>> op =
P.
ScalarToTensor()
>>> data = 1
>>> output = op(data, mindspore.float32)
"""
...
...
@@ -934,7 +934,7 @@ class InvertPermutation(PrimitiveWithInfer):
tuple[int]. the lenth is same as input.
Examples:
>>> invert = InvertPermutation()
>>> invert =
P.
InvertPermutation()
>>> input_data = (3, 4, 0, 2, 1)
>>> output = invert(input_data)
>>> output == (2, 4, 3, 0, 1)
...
...
@@ -982,8 +982,8 @@ class Argmax(PrimitiveWithInfer):
Tensor, indices of the max value of input tensor across the axis.
Examples:
>>> input = Tensor(np.array([2.0, 3.1, 1.2]))
>>> index =
Argmax()(input
)
>>> input
_x
= Tensor(np.array([2.0, 3.1, 1.2]))
>>> index =
P.Argmax()(input_x
)
>>> assert index == Tensor(1, mindspore.int64)
"""
...
...
@@ -1030,8 +1030,8 @@ class Argmin(PrimitiveWithInfer):
Tensor, indices of the min value of input tensor across the axis.
Examples:
>>> input = Tensor(np.array([2.0, 3.1, 1.2]))
>>> index =
Argmin()(input
)
>>> input
_x
= Tensor(np.array([2.0, 3.1, 1.2]))
>>> index =
P.Argmin()(input_x
)
>>> assert index == Tensor(2, mindspore.int64)
"""
...
...
@@ -1082,8 +1082,8 @@ class ArgMaxWithValue(PrimitiveWithInfer):
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
Examples:
>>> input = Tensor(np.random.rand(5))
>>> index, output =
ArgMaxWithValue()(input
)
>>> input
_x
= Tensor(np.random.rand(5))
>>> index, output =
P.ArgMaxWithValue()(input_x
)
"""
@
prim_attr_register
...
...
@@ -1129,8 +1129,8 @@ class ArgMinWithValue(PrimitiveWithInfer):
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
Examples:
>>> input = Tensor(np.random.rand(5))
>>> index, output =
ArgMinWithValue()(input
)
>>> input
_x
= Tensor(np.random.rand(5))
>>> index, output =
P.ArgMinWithValue()(input_x
)
"""
@
prim_attr_register
def
__init__
(
self
,
axis
=
0
,
keep_dims
=
False
):
...
...
@@ -1325,7 +1325,7 @@ class Concat(PrimitiveWithInfer):
Examples:
>>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
>>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
>>> op = Concat()
>>> op =
P.
Concat()
>>> output = op((data1, data2))
"""
...
...
@@ -1607,7 +1607,7 @@ class Select(PrimitiveWithInfer):
Tensor, has the same shape as input_y. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
Examples:
>>> select = Select()
>>> select =
P.
Select()
>>> input_x = Tensor([True, False])
>>> input_y = Tensor([2,3], mindspore.float32)
>>> input_z = Tensor([1,2], mindspore.float32)
...
...
@@ -1681,7 +1681,7 @@ class StridedSlice(PrimitiveWithInfer):
Examples
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
>>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
>>> slice = StridedSlice()
>>> slice =
P.
StridedSlice()
>>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
>>> output.shape()
(1, 1, 3)
...
...
@@ -1913,9 +1913,9 @@ class ScatterNd(PrimitiveWithInfer):
Tensor, the new tensor, has the same type as `update` and the same shape as `shape`.
Examples:
>>> op = ScatterNd()
>>> update = Tensor(np.array([3.2, 1.1]), mindspore.float32)
>>> op = P.ScatterNd()
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
>>> update = Tensor(np.array([3.2, 1.1]), mindspore.float32)
>>> shape = (3, 3)
>>> output = op(indices, update, shape)
"""
...
...
@@ -1964,7 +1964,7 @@ class ResizeNearestNeighbor(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> resize = ResizeNearestNeighbor((2, 2))
>>> resize =
P.
ResizeNearestNeighbor((2, 2))
>>> output = resize(input_tensor)
"""
...
...
@@ -1997,7 +1997,7 @@ class GatherNd(PrimitiveWithInfer):
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> op = GatherNd()
>>> op =
P.
GatherNd()
>>> output = op(input_x, indices)
"""
...
...
@@ -2039,7 +2039,7 @@ class ScatterNdUpdate(PrimitiveWithInfer):
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> update = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> op = ScatterNdUpdate()
>>> op =
P.
ScatterNdUpdate()
>>> output = op(input_x, indices, update)
"""
...
...
@@ -2090,7 +2090,7 @@ class SpaceToDepth(PrimitiveWithInfer):
Examples:
>>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32)
>>> block_size = 2
>>> op = SpaceToDepth(block_size)
>>> op =
P.
SpaceToDepth(block_size)
>>> output = op(x)
>>> output.asnumpy().shape == (1,12,1,1)
"""
...
...
@@ -2148,7 +2148,7 @@ class DepthToSpace(PrimitiveWithInfer):
Examples:
>>> x = Tensor(np.random.rand(1,12,1,1), mindspore.float32)
>>> block_size = 2
>>> op = DepthToSpace(block_size)
>>> op =
P.
DepthToSpace(block_size)
>>> output = op(x)
>>> output.asnumpy().shape == (1,3,2,2)
"""
...
...
@@ -2212,8 +2212,8 @@ class SpaceToBatch(PrimitiveWithInfer):
>>> block_size = 2
>>> paddings = [[0, 0], [0, 0]]
>>> space_to_batch = P.SpaceToBatch(block_size, paddings)
>>> x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
>>> space_to_batch(x)
>>>
input_
x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
>>> space_to_batch(
input_
x)
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
"""
...
...
@@ -2280,8 +2280,8 @@ class BatchToSpace(PrimitiveWithInfer):
>>> block_size = 2
>>> crops = [[0, 0], [0, 0]]
>>> op = P.BatchToSpace(block_size, crops)
>>> x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
>>> output = op(x)
>>>
input_
x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
>>> output = op(
input_
x)
[[[[1., 2.], [3., 4.]]]]
"""
...
...
mindspore/ops/operations/math_ops.py
浏览文件 @
83573831
...
...
@@ -112,9 +112,9 @@ class TensorAdd(_MathBinaryOp):
Examples:
>>> add = P.TensorAdd()
>>> x = Tensor(np.array([1,2,3]).astype(np.float32))
>>> y = Tensor(np.array([4,5,6]).astype(np.float32))
>>> add(
x,
y)
>>>
input_
x = Tensor(np.array([1,2,3]).astype(np.float32))
>>>
input_
y = Tensor(np.array([4,5,6]).astype(np.float32))
>>> add(
input_x, input_
y)
[5,7,9]
"""
...
...
@@ -124,23 +124,24 @@ class AssignAdd(PrimitiveWithInfer):
Updates a `Parameter` by adding a value to it.
Inputs:
- **input_x** (Parameter) - The `Parameter`.
- **input_y** (Union[scalar, Tensor]) - Has the same shape as `input_x`.
- **variable** (Parameter) - The `Parameter`.
- **value** (Union[numbers.Number, Tensor]) - The value to be added to the `variable`.
It should have the same shape as `variable` if it is a Tensor.
Examples:
>>> class Net(Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.AssignAdd = P.AssignAdd()
>>> self.
inputdata
= Parameter(initializer(1, [1], mindspore.int64), name="global_step")
>>> self.
variable
= Parameter(initializer(1, [1], mindspore.int64), name="global_step")
>>>
>>> def construct(self, x):
>>> self.AssignAdd(self.
inputdata
, x)
>>> return self.
inputdata
>>> self.AssignAdd(self.
variable
, x)
>>> return self.
variable
>>>
>>> net = Net()
>>>
x
= Tensor(np.ones([1]).astype(np.int64)*100)
>>> net(
x
)
>>>
value
= Tensor(np.ones([1]).astype(np.int64)*100)
>>> net(
value
)
"""
__mindspore_signature__
=
(
(
'variable'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
),
...
...
@@ -166,22 +167,24 @@ class AssignSub(PrimitiveWithInfer):
Updates a `Parameter` by subtracting a value from it.
Inputs:
- **input_x** (Parameter) - The `Parameter`.
- **input_y** (Union[scalar, Tensor]) - Has the same shape as `input_x`.
- **variable** (Parameter) - The `Parameter`.
- **value** (Union[numbers.Number, Tensor]) - The value to be subtracted from the `variable`.
It should have the same shape as `variable` if it is a Tensor.
Examples:
>>> class Net(Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.AssignSub = P.AssignSub()
>>> self.
inputdata
= Parameter(initializer(1, [1], mindspore.int64), name="global_step")
>>> self.
variable
= Parameter(initializer(1, [1], mindspore.int64), name="global_step")
>>>
>>> def construct(self, x):
>>> self.AssignSub(self.
inputdata
, x)
>>> return self.
inputdata
>>> self.AssignSub(self.
variable
, x)
>>> return self.
variable
>>>
>>> net = Net()
>>>
x
= Tensor(np.ones([1]).astype(np.int64)*100)
>>> net(
x
)
>>>
value
= Tensor(np.ones([1]).astype(np.int64)*100)
>>> net(
value
)
"""
__mindspore_signature__
=
(
...
...
@@ -263,9 +266,9 @@ class ReduceMean(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Examples:
>>>
data
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>>
input_x
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceMean(keep_dims=True)
>>> output = op(
data
, 1)
>>> output = op(
input_x
, 1)
"""
...
...
@@ -295,9 +298,9 @@ class ReduceSum(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Examples:
>>>
data
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>>
input_x
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceSum(keep_dims=True)
>>> output = op(
data
, 1)
>>> output = op(
input_x
, 1)
"""
...
...
@@ -328,9 +331,9 @@ class ReduceAll(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Examples:
>>>
data
= Tensor(np.array([[True, False], [True, True]]))
>>>
input_x
= Tensor(np.array([[True, False], [True, True]]))
>>> op = P.ReduceAll(keep_dims=True)
>>> output = op(
data
, 1)
>>> output = op(
input_x
, 1)
"""
def
__infer__
(
self
,
input_x
,
axis
):
...
...
@@ -364,9 +367,9 @@ class ReduceMax(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Examples:
>>>
data
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>>
input_x
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceMax(keep_dims=True)
>>> output = op(
data
, 1)
>>> output = op(
input_x
, 1)
"""
...
...
@@ -397,9 +400,9 @@ class ReduceMin(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Examples:
>>>
data
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>>
input_x
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceMin(keep_dims=True)
>>> output = op(
data
, 1)
>>> output = op(
input_x
, 1)
"""
...
...
@@ -429,9 +432,9 @@ class ReduceProd(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Examples:
>>>
data
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>>
input_x
= Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = P.ReduceProd(keep_dims=True)
>>> output = op(
data
, 1)
>>> output = op(
input_x
, 1)
"""
...
...
@@ -451,15 +454,15 @@ class CumProd(PrimitiveWithInfer):
Tensor, has the same shape and dtype as the 'input_x'.
Examples:
>>>
data
= Tensor(np.array([a, b, c]).astype(np.float32))
>>>
input_x
= Tensor(np.array([a, b, c]).astype(np.float32))
>>> op0 = P.CumProd()
>>> output = op0(
data
, 0) # output=[a, a * b, a * b * c]
>>> output = op0(
input_x
, 0) # output=[a, a * b, a * b * c]
>>> op1 = P.CumProd(exclusive=True)
>>> output = op1(
data
, 0) # output=[1, a, a * b]
>>> output = op1(
input_x
, 0) # output=[1, a, a * b]
>>> op2 = P.CumProd(reverse=True)
>>> output = op2(
data
, 0) # output=[a * b * c, b * c, c]
>>> output = op2(
input_x
, 0) # output=[a * b * c, b * c, c]
>>> op3 = P.CumProd(exclusive=True, reverse=True)
>>> output = op3(
data
, 0) # output=[b * c, c, 1]
>>> output = op3(
input_x
, 0) # output=[b * c, c, 1]
"""
@
prim_attr_register
def
__init__
(
self
,
exclusive
=
False
,
reverse
=
False
):
...
...
@@ -1190,7 +1193,7 @@ class FloorMod(_MathBinaryOp):
Examples:
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
>>> floor_mod = FloorMod()
>>> floor_mod =
P.
FloorMod()
>>> floor_mod(input_x, input_y)
[2, 1, 2]
"""
...
...
@@ -1207,9 +1210,9 @@ class Acosh(PrimitiveWithInfer):
Tensor, has the same shape as `input_x`.
Examples:
>>> acosh = Acosh()
>>>
X
= Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
>>> output = acosh(
X
)
>>> acosh =
P.
Acosh()
>>>
input_x
= Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
>>> output = acosh(
input_x
)
"""
@
prim_attr_register
...
...
@@ -1286,7 +1289,7 @@ class EqualCount(PrimitiveWithInfer):
- **input_y** (Tensor) - The second input tensor.
Outputs:
Tensor,
has the same shape as the `input_x`
.
Tensor,
with the type as `mindspore.int32` and size as (1,)
.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
...
...
@@ -1324,7 +1327,7 @@ class NotEqual(_LogicBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a tensor whose data type is number or bool, or
a number or a bool object.
- **input_y** (Union[Tensor, Number, bool]) - The second input tensor whose data type is same as
'input_x'
or
- **input_y** (Union[Tensor, Number, bool]) - The second input tensor whose data type is same as
`input_x`
or
a number or a bool object.
Outputs:
...
...
@@ -1359,11 +1362,11 @@ class Greater(_LogicBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
'input_x'
or
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
`input_x`
or
a number.
Outputs:
Tensor, the shape is same as the shape after broadcasting, and the data type is
same as 'input_x'
.
Tensor, the shape is same as the shape after broadcasting, and the data type is
bool
.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
...
...
@@ -1386,11 +1389,11 @@ class GreaterEqual(_LogicBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
'input_x'
or
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
`input_x`
or
a number.
Outputs:
Tensor, the shape is same as the shape after broadcasting, and the data type is bool
'
.
Tensor, the shape is same as the shape after broadcasting, and the data type is bool.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
...
...
@@ -1413,7 +1416,7 @@ class Less(_LogicBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
'input_x'
or
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
`input_x`
or
a number.
Outputs:
...
...
@@ -1440,7 +1443,7 @@ class LessEqual(_LogicBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number]) - The first input is a tensor whose data type is number or a number.
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
'input_x'
or
- **input_y** (Union[Tensor, Number]) - The second input is a tensor whose data type is same as
`input_x`
or
a number.
Outputs:
...
...
@@ -1752,8 +1755,8 @@ class Cos(PrimitiveWithInfer):
Examples:
>>> cos = P.Cos()
>>>
X
= Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
>>> output = cos(
X
)
>>>
input_x
= Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
>>> output = cos(
input_x
)
"""
@
prim_attr_register
...
...
@@ -1780,8 +1783,8 @@ class ACos(PrimitiveWithInfer):
Examples:
>>> acos = P.ACos()
>>>
X
= Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
>>> output = acos(
X
)
>>>
input_x
= Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
>>> output = acos(
input_x
)
"""
@
prim_attr_register
...
...
@@ -1993,7 +1996,7 @@ class Atan2(_MathBinaryOp):
- **input_y** (Tensor) - The input tensor.
Outputs:
Tensor, the shape is same as the shape after broadcasting, and the data type is same as
'input_x'
.
Tensor, the shape is same as the shape after broadcasting, and the data type is same as
`input_x`
.
Examples:
>>> input_x = Tensor(np.array([[0, 1]]), mindspore.float32)
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
83573831
...
...
@@ -41,7 +41,7 @@ class Flatten(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
>>> flatten = Flatten()
>>> flatten =
P.
Flatten()
>>> output = flatten(input_tensor)
>>> assert output.shape() == (1, 24)
"""
...
...
@@ -155,7 +155,7 @@ class ReLU(PrimitiveWithInfer):
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]], np.float32))
>>> relu = ReLU()
>>> relu =
P.
ReLU()
>>> result = relu(input_x)
[[0, 4.0, 0.0], [2.0, 0.0, 9.0]]
"""
...
...
@@ -188,7 +188,7 @@ class ReLU6(PrimitiveWithInfer):
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]], np.float32))
>>> relu6 = ReLU6()
>>> relu6 =
P.
ReLU6()
>>> result = relu6(input_x)
"""
...
...
@@ -222,10 +222,10 @@ class Elu(PrimitiveWithInfer):
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]], np.float32))
>>> elu = Elu()
>>> elu =
P.
Elu()
>>> result = elu(input_x)
Tensor([[-0.632 4.0 -0.999]
[2.0 -0.993 9.0 ]], shape=(2, 3), dtype=m
s
.float32)
[2.0 -0.993 9.0 ]], shape=(2, 3), dtype=m
indspore
.float32)
"""
@
prim_attr_register
...
...
@@ -1082,7 +1082,7 @@ class TopK(PrimitiveWithInfer):
Examples:
>>> topk = P.TopK(sorted=True)
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16)
)
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16)
>>> k = 3
>>> values, indices = topk(input_x, k)
>>> assert values == Tensor(np.array([5, 4, 3]))
...
...
@@ -1223,8 +1223,8 @@ class ApplyMomentum(PrimitiveWithInfer):
Examples:
>>> net = ResNet50()
>>> loss = SoftmaxCrossEntropyWithLogits()
>>> opt = ApplyMomentum(Tensor(np.array([0.001])), Tensor(np.array([0.9])),
>>> loss =
nn.
SoftmaxCrossEntropyWithLogits()
>>> opt =
P.
ApplyMomentum(Tensor(np.array([0.001])), Tensor(np.array([0.9])),
filter(lambda x: x.requires_grad, net.get_parameters()))
>>> model = Model(net, loss, opt)
"""
...
...
@@ -1351,6 +1351,7 @@ class SGD(PrimitiveWithInfer):
class
ApplyRMSProp
(
PrimitiveWithInfer
):
"""
Optimizer that implements the Root Mean Square prop(RMSProp) algorithm.
Please refer to the usage in source code of `nn.RMSProp`.
Note:
Update `var` according to the RMSProp algorithm.
...
...
@@ -1386,12 +1387,6 @@ class ApplyRMSProp(PrimitiveWithInfer):
Outputs:
Tensor, parameters to be update.
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = RMSProp(params=net.trainable_params(), learning_rate=learning_rate)
>>> model = Model(net, loss, opt)
"""
@
prim_attr_register
...
...
@@ -1424,6 +1419,7 @@ class ApplyRMSProp(PrimitiveWithInfer):
class
ApplyCenteredRMSProp
(
PrimitiveWithInfer
):
"""
Optimizer that implements the centered RMSProp algorithm.
Please refer to the usage in source code of `nn.RMSProp`.
Note:
Update `var` according to the centered RMSProp algorithm.
...
...
@@ -1464,12 +1460,6 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
Outputs:
Tensor, parameters to be update.
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = RMSProp(params=net.trainable_params(), learning_rate=learning_rate, centered=True)
>>> model = Model(net, loss, opt)
"""
@
prim_attr_register
...
...
@@ -1596,7 +1586,7 @@ class DropoutGenMask(Primitive):
Tensor, the value of generated mask for input shape.
Examples:
>>> dropout_gen_mask = DropoutGenMask()
>>> dropout_gen_mask =
P.
DropoutGenMask()
>>> shape = (20, 16, 50)
>>> keep_prob = Tensor(0.5, mindspore.float32)
>>> mask = dropout_gen_mask(shape, keep_prob)
...
...
@@ -1631,8 +1621,8 @@ class DropoutDoMask(PrimitiveWithInfer):
>>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
>>> shape = (20, 16, 50)
>>> keep_prob = Tensor(0.5, mindspore.float32)
>>> dropout_gen_mask = DropoutGenMask()
>>> dropout_do_mask = DropoutDoMask()
>>> dropout_gen_mask =
P.
DropoutGenMask()
>>> dropout_do_mask =
P.
DropoutDoMask()
>>> mask = dropout_gen_mask(shape, keep_prob)
>>> output = dropout_do_mask(x, mask, keep_prob)
>>> assert output.shape() == (20, 16, 50)
...
...
@@ -1737,7 +1727,7 @@ class OneHot(PrimitiveWithInfer):
Examples:
>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
>>> onehot = OneHot()
>>> onehot =
P.
OneHot()
>>> result = onehot(indices, depth, on_value, off_value)
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
"""
...
...
@@ -1793,7 +1783,7 @@ class Gelu(PrimitiveWithInfer):
Examples:
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> gelu = Gelu()
>>> gelu =
P.
Gelu()
>>> result = gelu(tensor)
"""
...
...
@@ -1834,7 +1824,7 @@ class GetNext(PrimitiveWithInfer):
and the type is described is `types`.
Examples:
>>> get_next = GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 'shared_name')
>>> get_next =
P.
GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 'shared_name')
>>> feature, label = get_next()
"""
...
...
@@ -2015,7 +2005,7 @@ class Pad(PrimitiveWithInfer):
Examples:
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> pad_op = Pad(((1, 2), (2, 1)))
>>> pad_op = P
.P
ad(((1, 2), (2, 1)))
>>> output_tensor = pad_op(input_tensor)
>>> assert output_tensor == Tensor(np.array([[ 0. , 0. , 0. , 0. , 0. , 0. ],
>>> [ 0. , 0. , -0.1, 0.3, 3.6, 0. ],
...
...
mindspore/train/serialization.py
浏览文件 @
83573831
...
...
@@ -406,7 +406,7 @@ def export(net, *inputs, file_name, file_format='GEIR'):
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'LITE' format for exported model.
- GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
Ascend model.
Ascend model.
- ONNX: Open Neural Network eXchange. An open format built to represent machine learning models.
- LITE: Huawei model format for mobile.
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录