Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
82b103a7
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82b103a7
编写于
7月 31, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 31, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3780 add gpu BinaryCrossEntropy
Merge pull request !3780 from baihuawei/losscuda
上级
741c2898
aa9ea170
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
320 addition
and
0 deletion
+320
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.cc
...kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.cc
+28
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.h
.../kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.h
+89
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.cc
...ernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.cc
+30
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.h
...kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.h
+90
-0
tests/st/ops/gpu/test_binary_cross_entropy_op.py
tests/st/ops/gpu/test_binary_cross_entropy_op.py
+83
-0
未找到文件。
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.cc
0 → 100644
浏览文件 @
82b103a7
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
MS_REG_GPU_KERNEL_ONE
(
BinaryCrossEntropy
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
BinaryCrossEntropyGpuKernel
,
float
)
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.h
0 → 100644
浏览文件 @
82b103a7
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh"
namespace
mindspore
{
namespace
kernel
{
template
<
typename
T
>
class
BinaryCrossEntropyGpuKernel
:
public
GpuKernel
{
public:
BinaryCrossEntropyGpuKernel
()
:
input_size_
(
1
),
reduction_
(
1
)
{}
~
BinaryCrossEntropyGpuKernel
()
override
=
default
;
const
std
::
vector
<
size_t
>
&
GetInputSizeList
()
const
override
{
return
input_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetOutputSizeList
()
const
override
{
return
output_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetWorkspaceSizeList
()
const
override
{
return
workspace_size_list_
;
}
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
,
const
std
::
vector
<
AddressPtr
>
&
outputs
,
void
*
stream_ptr
)
override
{
T
*
input_x
=
GetDeviceAddress
<
T
>
(
inputs
,
0
);
T
*
input_y
=
GetDeviceAddress
<
T
>
(
inputs
,
1
);
T
*
weight
=
GetDeviceAddress
<
T
>
(
inputs
,
2
);
T
*
loss
=
GetDeviceAddress
<
T
>
(
outputs
,
0
);
BinaryCrossEntropyLoss
(
input_size_
,
reduction_
,
input_x
,
input_y
,
weight
,
loss
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
return
true
;
}
bool
Init
(
const
CNodePtr
&
kernel_node
)
override
{
auto
input_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
i
++
)
{
input_size_
*=
input_shape
[
i
];
}
string
reduction
=
GetAttr
<
string
>
(
kernel_node
,
"reduction"
);
if
(
reduction
==
"none"
)
{
reduction_
=
0
;
}
else
if
(
reduction
==
"sum"
)
{
reduction_
=
2
;
}
InitSizeLists
();
return
true
;
}
protected:
void
InitSizeLists
()
override
{
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
if
(
reduction_
==
0
)
{
output_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
}
else
{
output_size_list_
.
push_back
(
sizeof
(
T
));
}
}
private:
size_t
input_size_
;
int
reduction_
;
std
::
vector
<
size_t
>
input_size_list_
;
std
::
vector
<
size_t
>
output_size_list_
;
std
::
vector
<
size_t
>
workspace_size_list_
;
};
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_H
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.cc
0 → 100644
浏览文件 @
82b103a7
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.h"
namespace
mindspore
{
namespace
kernel
{
MS_REG_GPU_KERNEL_ONE
(
BinaryCrossEntropyGrad
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
BinaryCrossEntropyGradGpuKernel
,
float
)
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.h
0 → 100644
浏览文件 @
82b103a7
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
#include <string>
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh"
namespace
mindspore
{
namespace
kernel
{
template
<
typename
T
>
class
BinaryCrossEntropyGradGpuKernel
:
public
GpuKernel
{
public:
BinaryCrossEntropyGradGpuKernel
()
:
input_size_
(
1
),
reduction_
(
1
)
{}
~
BinaryCrossEntropyGradGpuKernel
()
override
=
default
;
const
std
::
vector
<
size_t
>
&
GetInputSizeList
()
const
override
{
return
input_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetOutputSizeList
()
const
override
{
return
output_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetWorkspaceSizeList
()
const
override
{
return
workspace_size_list_
;
}
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
,
const
std
::
vector
<
AddressPtr
>
&
outputs
,
void
*
stream_ptr
)
override
{
T
*
input_x
=
GetDeviceAddress
<
T
>
(
inputs
,
0
);
T
*
input_y
=
GetDeviceAddress
<
T
>
(
inputs
,
1
);
T
*
dloss
=
GetDeviceAddress
<
T
>
(
inputs
,
2
);
T
*
weight
=
GetDeviceAddress
<
T
>
(
inputs
,
3
);
T
*
dx
=
GetDeviceAddress
<
T
>
(
outputs
,
0
);
BinaryCrossEntropyLossGrad
(
input_size_
,
reduction_
,
input_x
,
input_y
,
weight
,
dloss
,
dx
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
return
true
;
}
bool
Init
(
const
CNodePtr
&
kernel_node
)
override
{
auto
input_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
i
++
)
{
input_size_
*=
input_shape
[
i
];
}
string
reduction
=
GetAttr
<
string
>
(
kernel_node
,
"reduction"
);
if
(
reduction
==
"none"
)
{
reduction_
=
0
;
}
else
if
(
reduction
==
"sum"
)
{
reduction_
=
2
;
}
InitSizeLists
();
return
true
;
}
protected:
void
InitSizeLists
()
override
{
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
if
(
reduction_
==
0
)
{
input_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
output_size_list_
.
push_back
(
input_size_
*
sizeof
(
T
));
}
else
{
input_size_list_
.
push_back
(
sizeof
(
T
));
output_size_list_
.
push_back
(
sizeof
(
T
));
}
}
private:
size_t
input_size_
;
int
reduction_
;
std
::
vector
<
size_t
>
input_size_list_
;
std
::
vector
<
size_t
>
output_size_list_
;
std
::
vector
<
size_t
>
workspace_size_list_
;
};
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
tests/st/ops/gpu/test_binary_cross_entropy_op.py
0 → 100644
浏览文件 @
82b103a7
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
pytest
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.ops
import
composite
as
C
from
mindspore.ops
import
operations
as
P
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
class
Net
(
nn
.
Cell
):
def
__init__
(
self
,
reduction
=
"none"
):
super
(
Net
,
self
).
__init__
()
self
.
BinaryCrossEntropy
=
P
.
BinaryCrossEntropy
(
"none"
)
def
construct
(
self
,
x
,
y
,
weight
):
return
self
.
BinaryCrossEntropy
(
x
,
y
,
weight
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_binary_cross_entropy_loss
():
np
.
random
.
seed
(
42
)
prediction
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
target
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
weight
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
net
=
Net
()
loss
=
net
(
Tensor
(
prediction
),
Tensor
(
target
),
Tensor
(
weight
))
expect
=
[
0.09555826
,
1.2861121
,
0.03518666
,
0.6969416
,
0.24313456
,
0.99062896
,
0.19205657
,
0.5465214
,
0.36964455
,
0.21999404
,
2.2953863
,
2.2566645
,
1.5803775
,
1.3266402
,
0.9883408
,
1.2997618
,
0.05439841
,
0.14389999
,
0.03405444
,
0.23934692
]
assert
np
.
allclose
(
loss
.
asnumpy
(),
expect
)
class
Grad
(
nn
.
Cell
):
def
__init__
(
self
,
network
):
super
(
Grad
,
self
).
__init__
()
self
.
grad
=
C
.
GradOperation
(
name
=
"get_all"
,
get_all
=
True
,
sens_param
=
True
)
self
.
network
=
network
def
construct
(
self
,
x1
,
x2
,
sens
,
weight
):
gout
=
self
.
grad
(
self
.
network
)(
x1
,
x2
,
sens
,
weight
)
return
gout
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_binary_cross_entropy_loss_grad
():
np
.
random
.
seed
(
42
)
prediction
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
target
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
sens
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
weight
=
np
.
random
.
rand
(
20
).
astype
(
np
.
float32
)
grad
=
Grad
(
Net
())
dx
=
grad
(
Tensor
(
prediction
),
Tensor
(
target
),
Tensor
(
sens
),
Tensor
(
weight
))
dx1_expect
=
[
-
4.80516590e-02
,
2.32625079e+00
,
6.38972521e-02
,
3.13642323e-01
,
-
1.65661633e-01
,
-
1.71821892e+00
,
-
1.13685496e-01
,
1.26669514e+00
,
1.47891801e-03
,
5.83921909e-01
,
-
2.17992840e+01
,
4.21899414e+00
,
2.85430793e-02
,
-
3.21346498e+00
,
-
2.22674108e+00
,
-
2.80453944e+00
,
-
1.19787852e-04
,
2.48514321e-02
,
-
1.66696273e-02
,
-
2.71965731e-02
]
assert
np
.
allclose
(
dx
[
0
].
asnumpy
(),
dx1_expect
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录