Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
7dfd3699
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7dfd3699
编写于
5月 29, 2020
作者:
W
wukesong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify lenet&alexnet dir
上级
fce37a5f
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
148 addition
and
70 deletion
+148
-70
model_zoo/alexnet/README.md
model_zoo/alexnet/README.md
+0
-0
model_zoo/alexnet/alexnet.py
model_zoo/alexnet/alexnet.py
+2
-3
model_zoo/alexnet/config.py
model_zoo/alexnet/config.py
+0
-0
model_zoo/alexnet/dataset.py
model_zoo/alexnet/dataset.py
+1
-1
model_zoo/alexnet/eval.py
model_zoo/alexnet/eval.py
+5
-6
model_zoo/alexnet/generator_lr.py
model_zoo/alexnet/generator_lr.py
+0
-0
model_zoo/alexnet/train.py
model_zoo/alexnet/train.py
+5
-5
model_zoo/lenet/README.md
model_zoo/lenet/README.md
+0
-0
model_zoo/lenet/config.py
model_zoo/lenet/config.py
+0
-0
model_zoo/lenet/dataset.py
model_zoo/lenet/dataset.py
+0
-0
model_zoo/lenet/eval.py
model_zoo/lenet/eval.py
+1
-1
model_zoo/lenet/lenet.py
model_zoo/lenet/lenet.py
+2
-3
model_zoo/lenet/train.py
model_zoo/lenet/train.py
+2
-2
tests/perf_test/lenet.py
tests/perf_test/lenet.py
+78
-0
tests/perf_test/test_lenet.py
tests/perf_test/test_lenet.py
+2
-2
tests/st/networks/models/lenet.py
tests/st/networks/models/lenet.py
+0
-46
tests/st/networks/test_gpu_lenet.py
tests/st/networks/test_gpu_lenet.py
+50
-1
未找到文件。
example/alexnet_cifar10
/README.md
→
model_zoo/alexnet
/README.md
浏览文件 @
7dfd3699
文件已移动
m
indspore/model_zoo
/alexnet.py
→
m
odel_zoo/alexnet
/alexnet.py
浏览文件 @
7dfd3699
...
...
@@ -36,10 +36,9 @@ class AlexNet(nn.Cell):
"""
Alexnet
"""
def
__init__
(
self
,
num_classes
=
10
):
def
__init__
(
self
,
num_classes
=
10
,
channel
=
3
):
super
(
AlexNet
,
self
).
__init__
()
self
.
batch_size
=
32
self
.
conv1
=
conv
(
3
,
96
,
11
,
stride
=
4
)
self
.
conv1
=
conv
(
channel
,
96
,
11
,
stride
=
4
)
self
.
conv2
=
conv
(
96
,
256
,
5
,
pad_mode
=
"same"
)
self
.
conv3
=
conv
(
256
,
384
,
3
,
pad_mode
=
"same"
)
self
.
conv4
=
conv
(
384
,
384
,
3
,
pad_mode
=
"same"
)
...
...
example/alexnet_cifar10
/config.py
→
model_zoo/alexnet
/config.py
浏览文件 @
7dfd3699
文件已移动
example/alexnet_cifar10
/dataset.py
→
model_zoo/alexnet
/dataset.py
浏览文件 @
7dfd3699
...
...
@@ -23,7 +23,7 @@ import mindspore.dataset.transforms.vision.c_transforms as CV
from
mindspore.common
import
dtype
as
mstype
def
create_dataset
(
data_path
,
batch_size
=
32
,
repeat_size
=
1
,
status
=
"train"
):
def
create_dataset
_mnist
(
data_path
,
batch_size
=
32
,
repeat_size
=
1
,
status
=
"train"
):
"""
create dataset for train or test
"""
...
...
example/alexnet_cifar10
/eval.py
→
model_zoo/alexnet
/eval.py
浏览文件 @
7dfd3699
...
...
@@ -20,10 +20,10 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
import
argparse
from
config
import
alexnet_cfg
as
cfg
from
dataset
import
create_dataset
from
dataset
import
create_dataset_mnist
from
alexnet
import
AlexNet
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore.model_zoo.alexnet
import
AlexNet
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
...
...
@@ -50,9 +50,8 @@ if __name__ == "__main__":
print
(
"============== Starting Testing =============="
)
param_dict
=
load_checkpoint
(
args
.
ckpt_path
)
load_param_into_net
(
network
,
param_dict
)
ds_eval
=
create_dataset
(
args
.
data_path
,
cfg
.
batch_size
,
1
,
"test"
)
ds_eval
=
create_dataset_mnist
(
args
.
data_path
,
cfg
.
batch_size
,
status
=
"test"
)
acc
=
model
.
eval
(
ds_eval
,
dataset_sink_mode
=
args
.
dataset_sink_mode
)
print
(
"============== Accuracy:{} =============="
.
format
(
acc
))
example/alexnet_cifar10
/generator_lr.py
→
model_zoo/alexnet
/generator_lr.py
浏览文件 @
7dfd3699
文件已移动
example/alexnet_cifar10
/train.py
→
model_zoo/alexnet
/train.py
浏览文件 @
7dfd3699
...
...
@@ -20,14 +20,14 @@ python train.py --data_path /YourDataPath
import
argparse
from
config
import
alexnet_cfg
as
cfg
from
dataset
import
create_dataset
from
dataset
import
create_dataset
_mnist
from
generator_lr
import
get_lr
from
alexnet
import
AlexNet
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore
import
Tensor
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.model_zoo.alexnet
import
AlexNet
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
...
...
@@ -50,9 +50,9 @@ if __name__ == "__main__":
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
# test
print
(
"============== Starting Training =============="
)
ds_train
=
create_dataset
(
args
.
data_path
,
cfg
.
batch_size
,
cfg
.
epoch_size
)
ds_train
=
create_dataset
_mnist
(
args
.
data_path
,
cfg
.
batch_size
,
cfg
.
epoch_size
)
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
())
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
...
...
example/lenet_mnis
t/README.md
→
model_zoo/lene
t/README.md
浏览文件 @
7dfd3699
文件已移动
example/lenet_mnis
t/config.py
→
model_zoo/lene
t/config.py
浏览文件 @
7dfd3699
文件已移动
example/lenet_mnis
t/dataset.py
→
model_zoo/lene
t/dataset.py
浏览文件 @
7dfd3699
文件已移动
example/lenet_mnis
t/eval.py
→
model_zoo/lene
t/eval.py
浏览文件 @
7dfd3699
...
...
@@ -22,8 +22,8 @@ import os
import
argparse
from
dataset
import
create_dataset
from
config
import
mnist_cfg
as
cfg
from
lenet
import
LeNet5
import
mindspore.nn
as
nn
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore
import
context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
...
...
m
indspore/model_zoo
/lenet.py
→
m
odel_zoo/lenet
/lenet.py
浏览文件 @
7dfd3699
...
...
@@ -50,11 +50,10 @@ class LeNet5(nn.Cell):
>>> LeNet(num_class=10)
"""
def
__init__
(
self
,
num_class
=
10
):
def
__init__
(
self
,
num_class
=
10
,
channel
=
1
):
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
batch_size
=
32
self
.
conv1
=
conv
(
1
,
6
,
5
)
self
.
conv1
=
conv
(
channel
,
6
,
5
)
self
.
conv2
=
conv
(
6
,
16
,
5
)
self
.
fc1
=
fc_with_initialize
(
16
*
5
*
5
,
120
)
self
.
fc2
=
fc_with_initialize
(
120
,
84
)
...
...
example/lenet_mnis
t/train.py
→
model_zoo/lene
t/train.py
浏览文件 @
7dfd3699
...
...
@@ -22,8 +22,8 @@ import os
import
argparse
from
config
import
mnist_cfg
as
cfg
from
dataset
import
create_dataset
from
lenet
import
LeNet5
import
mindspore.nn
as
nn
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore
import
context
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
from
mindspore.train
import
Model
...
...
@@ -36,7 +36,7 @@ if __name__ == "__main__":
help
=
'device where the code will be implemented (default: Ascend)'
)
parser
.
add_argument
(
'--data_path'
,
type
=
str
,
default
=
"./MNIST_Data"
,
help
=
'path where the dataset is saved'
)
parser
.
add_argument
(
'--dataset_sink_mode'
,
type
=
bool
,
default
=
Fals
e
,
help
=
'dataset_sink_mode is False or True'
)
parser
.
add_argument
(
'--dataset_sink_mode'
,
type
=
bool
,
default
=
Tru
e
,
help
=
'dataset_sink_mode is False or True'
)
args
=
parser
.
parse_args
()
...
...
tests/perf_test/lenet.py
0 → 100644
浏览文件 @
7dfd3699
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LeNet."""
import
mindspore.nn
as
nn
from
mindspore.common.initializer
import
TruncatedNormal
def
conv
(
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
padding
=
0
):
"""weight initial for conv layer"""
weight
=
weight_variable
()
return
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
weight_init
=
weight
,
has_bias
=
False
,
pad_mode
=
"valid"
)
def
fc_with_initialize
(
input_channels
,
out_channels
):
"""weight initial for fc layer"""
weight
=
weight_variable
()
bias
=
weight_variable
()
return
nn
.
Dense
(
input_channels
,
out_channels
,
weight
,
bias
)
def
weight_variable
():
"""weight initial"""
return
TruncatedNormal
(
0.02
)
class
LeNet5
(
nn
.
Cell
):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def
__init__
(
self
,
num_class
=
10
,
channel
=
1
):
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
conv1
=
conv
(
channel
,
6
,
5
)
self
.
conv2
=
conv
(
6
,
16
,
5
)
self
.
fc1
=
fc_with_initialize
(
16
*
5
*
5
,
120
)
self
.
fc2
=
fc_with_initialize
(
120
,
84
)
self
.
fc3
=
fc_with_initialize
(
84
,
self
.
num_class
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
nn
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc3
(
x
)
return
x
tests/perf_test/test_lenet.py
浏览文件 @
7dfd3699
...
...
@@ -17,12 +17,12 @@
import
numpy
as
np
from
lenet
import
LeNet5
import
mindspore.nn
as
nn
import
mindspore.ops.composite
as
C
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore.common.api
import
_executor
from
mindspore.model_zoo.lenet
import
LeNet
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
...
...
@@ -61,7 +61,7 @@ def test_compile():
def
test_compile_grad
():
"""Compile forward and backward graph"""
net
=
LeNet
(
num_class
=
num_class
)
net
=
LeNet
5
(
num_class
=
num_class
)
inp
=
Tensor
(
np
.
array
(
np
.
random
.
randn
(
batch_size
,
channel
,
height
,
...
...
tests/st/networks/models/lenet.py
已删除
100644 → 0
浏览文件 @
fce37a5f
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
mindspore.nn
as
nn
from
mindspore.ops
import
operations
as
P
class
LeNet
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
LeNet
,
self
).
__init__
()
self
.
relu
=
P
.
ReLU
()
self
.
batch_size
=
32
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
kernel_size
=
5
,
stride
=
1
,
padding
=
0
,
has_bias
=
False
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
kernel_size
=
5
,
stride
=
1
,
padding
=
0
,
has_bias
=
False
,
pad_mode
=
'valid'
)
self
.
pool
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
reshape
=
P
.
Reshape
()
self
.
fc1
=
nn
.
Dense
(
400
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
def
construct
(
self
,
input_x
):
output
=
self
.
conv1
(
input_x
)
output
=
self
.
relu
(
output
)
output
=
self
.
pool
(
output
)
output
=
self
.
conv2
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
pool
(
output
)
output
=
self
.
reshape
(
output
,
(
self
.
batch_size
,
-
1
))
output
=
self
.
fc1
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
fc2
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
fc3
(
output
)
return
output
tests/st/networks/test_gpu_lenet.py
浏览文件 @
7dfd3699
...
...
@@ -26,17 +26,66 @@ import mindspore.nn as nn
from
mindspore
import
Tensor
from
mindspore.common
import
dtype
as
mstype
from
mindspore.dataset.transforms.vision
import
Inter
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore.nn
import
Dense
,
TrainOneStepCell
,
WithLossCell
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.nn.optim
import
Momentum
from
mindspore.ops
import
operations
as
P
from
mindspore.train
import
Model
from
mindspore.train.callback
import
LossMonitor
from
mindspore.common.initializer
import
TruncatedNormal
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
def
conv
(
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
padding
=
0
):
"""weight initial for conv layer"""
weight
=
weight_variable
()
return
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
weight_init
=
weight
,
has_bias
=
False
,
pad_mode
=
"valid"
)
def
fc_with_initialize
(
input_channels
,
out_channels
):
"""weight initial for fc layer"""
weight
=
weight_variable
()
bias
=
weight_variable
()
return
nn
.
Dense
(
input_channels
,
out_channels
,
weight
,
bias
)
def
weight_variable
():
"""weight initial"""
return
TruncatedNormal
(
0.02
)
class
LeNet5
(
nn
.
Cell
):
def
__init__
(
self
,
num_class
=
10
,
channel
=
1
):
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
conv1
=
conv
(
channel
,
6
,
5
)
self
.
conv2
=
conv
(
6
,
16
,
5
)
self
.
fc1
=
fc_with_initialize
(
16
*
5
*
5
,
120
)
self
.
fc2
=
fc_with_initialize
(
120
,
84
)
self
.
fc3
=
fc_with_initialize
(
84
,
self
.
num_class
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
nn
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc3
(
x
)
return
x
class
LeNet
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
LeNet
,
self
).
__init__
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录