Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
77b5ae05
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
77b5ae05
编写于
7月 02, 2020
作者:
X
xutianchun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix CropAndResize doc
上级
0cd9e4cc
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
16 addition
and
16 deletion
+16
-16
mindspore/ops/operations/image_ops.py
mindspore/ops/operations/image_ops.py
+14
-14
tests/st/ops/ascend/test_aicpu_ops/test_crop_and_reszie.py
tests/st/ops/ascend/test_aicpu_ops/test_crop_and_reszie.py
+2
-2
未找到文件。
mindspore/ops/operations/image_ops.py
浏览文件 @
77b5ae05
...
@@ -34,21 +34,21 @@ class CropAndResize(PrimitiveWithInfer):
...
@@ -34,21 +34,21 @@ class CropAndResize(PrimitiveWithInfer):
Inputs:
Inputs:
- **x** (Tensor) - The input image must be a 4-D tensor of shape [batch, image_height, image_width, depth].
- **x** (Tensor) - The input image must be a 4-D tensor of shape [batch, image_height, image_width, depth].
Types allowed: int8, int16, int32, int64, float16, float32, float64, uint8, uint16.
Types allowed: int8, int16, int32, int64, float16, float32, float64, uint8, uint16.
- **boxes** (Tensor) - A 2-D tensor of shape [num_boxes, 4].
- **boxes** (Tensor) - A 2-D tensor of shape [num_boxes, 4].
The i-th row of the tensor specifies the coordinates of a box in the box_ind[i] image
The i-th row of the tensor specifies the coordinates of a box in the box_ind[i] image
and is specified in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of y is mapped to
and is specified in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of y is mapped to
the image coordinate at y * (image_height - 1), so as the [0, 1] interval of normalized image height is
the image coordinate at y * (image_height - 1), so as the [0, 1] interval of normalized image height is
mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled
mapped to [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled
crop is an up-down flipped version of the original image. The width dimension is treated similarly.
crop is an up-down flipped version of the original image. The width dimension is treated similarly.
Normalized coordinates outside the [0, 1] range are allowed, in which case we use extrapolation_value to
Normalized coordinates outside the [0, 1] range are allowed, in which case we use extrapolation_value to
extrapolate the input image values. Types allowd: float32.
extrapolate the input image values. Types allowd: float32.
- **box_index** (Tensor) - A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
- **box_index** (Tensor) - A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
The value of box_ind[i] specifies the image that the i-th box refers to. Types allowd: int32.
The value of box_ind[i] specifies the image that the i-th box refers to. Types allowd: int32.
- **crop_size** (Tensor) - Only constant value is allowd. Types allowed: int32.
- **crop_size** (Tensor) - Only constant value is allowd. Types allowed: int32.
A 1-D tensor of 2 elements, size = [crop_height, crop_width].
A 1-D tensor of 2 elements, size = [crop_height, crop_width].
All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved.
All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved.
Both crop_height and crop_width need to be positive.
Both crop_height and crop_width need to be positive.
Outputs:
Outputs:
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] with type: float32.
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] with type: float32.
...
@@ -68,8 +68,8 @@ class CropAndResize(PrimitiveWithInfer):
...
@@ -68,8 +68,8 @@ class CropAndResize(PrimitiveWithInfer):
>>> IMAGE_WIDTH = 256
>>> IMAGE_WIDTH = 256
>>> CHANNELS = 3
>>> CHANNELS = 3
>>> image = np.random.normal(size=[BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS]).astype(np.float32)
>>> image = np.random.normal(size=[BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS]).astype(np.float32)
>>> boxes = np.random.uniform(s
hap
e=[NUM_BOXES, 4]).astype(np.float32)
>>> boxes = np.random.uniform(s
iz
e=[NUM_BOXES, 4]).astype(np.float32)
>>> box_index = np.random.uniform(s
hap
e=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
>>> box_index = np.random.uniform(s
iz
e=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32)
>>> crop_size = np.array([24, 24]).astype(np.int32)
>>> crop_size = np.array([24, 24]).astype(np.int32)
>>> crop_and_resize = CropAndResizeNet(crop_size=Tensor(crop_size))
>>> crop_and_resize = CropAndResizeNet(crop_size=Tensor(crop_size))
>>> output = crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_index))
>>> output = crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_index))
...
...
tests/st/ops/ascend/test_aicpu_ops/test_crop_and_reszie.py
浏览文件 @
77b5ae05
...
@@ -41,8 +41,8 @@ def test_net_float32():
...
@@ -41,8 +41,8 @@ def test_net_float32():
image_width
=
256
image_width
=
256
channels
=
3
channels
=
3
image
=
np
.
random
.
normal
(
size
=
[
batch_size
,
image_height
,
image_width
,
channels
]).
astype
(
np
.
float32
)
image
=
np
.
random
.
normal
(
size
=
[
batch_size
,
image_height
,
image_width
,
channels
]).
astype
(
np
.
float32
)
boxes
=
np
.
random
.
uniform
(
s
hap
e
=
[
num_boxes
,
4
]).
astype
(
np
.
float32
)
boxes
=
np
.
random
.
uniform
(
s
iz
e
=
[
num_boxes
,
4
]).
astype
(
np
.
float32
)
box_index
=
np
.
random
.
uniform
(
s
hap
e
=
[
num_boxes
],
low
=
0
,
high
=
batch_size
).
astype
(
np
.
int32
)
box_index
=
np
.
random
.
uniform
(
s
iz
e
=
[
num_boxes
],
low
=
0
,
high
=
batch_size
).
astype
(
np
.
int32
)
crop_size
=
np
.
array
([
24
,
24
]).
astype
(
np
.
int32
)
crop_size
=
np
.
array
([
24
,
24
]).
astype
(
np
.
int32
)
net
=
Net
(
crop_size
=
Tensor
(
crop_size
))
net
=
Net
(
crop_size
=
Tensor
(
crop_size
))
output
=
net
(
Tensor
(
image
),
Tensor
(
boxes
),
Tensor
(
box_index
))
output
=
net
(
Tensor
(
image
),
Tensor
(
boxes
),
Tensor
(
box_index
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录