Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
75fec82b
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
75fec82b
编写于
4月 14, 2020
作者:
K
kingfo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
resolve pynative operator issue
上级
5ed799d7
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
208 addition
and
106 deletion
+208
-106
mindspore/_extends/builtin_operations.py
mindspore/_extends/builtin_operations.py
+6
-2
mindspore/ccsrc/pipeline/pipeline.cc
mindspore/ccsrc/pipeline/pipeline.cc
+7
-5
mindspore/ccsrc/pynative/pynative_execute.cc
mindspore/ccsrc/pynative/pynative_execute.cc
+66
-21
mindspore/common/parameter.py
mindspore/common/parameter.py
+13
-5
mindspore/common/tensor.py
mindspore/common/tensor.py
+29
-14
mindspore/ops/_grad/grad_array_ops.py
mindspore/ops/_grad/grad_array_ops.py
+1
-1
mindspore/ops/_utils/__init__.py
mindspore/ops/_utils/__init__.py
+2
-2
mindspore/ops/_utils/utils.py
mindspore/ops/_utils/utils.py
+28
-1
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+1
-2
mindspore/ops/operations/_grad_ops.py
mindspore/ops/operations/_grad_ops.py
+28
-0
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+1
-52
mindspore/ops/operations/other_ops.py
mindspore/ops/operations/other_ops.py
+3
-0
tests/ut/python/ir/test_tensor.py
tests/ut/python/ir/test_tensor.py
+22
-0
tests/vm_impl/array_ops_vm_impl.py
tests/vm_impl/array_ops_vm_impl.py
+1
-1
未找到文件。
mindspore/_extends/builtin_operations.py
浏览文件 @
75fec82b
...
@@ -125,7 +125,7 @@ def list_len(x):
...
@@ -125,7 +125,7 @@ def list_len(x):
return
len
(
x
)
return
len
(
x
)
# only used in PyNative mode
s
# only used in PyNative mode
def
partial
(
*
args
):
def
partial
(
*
args
):
"""Implement `partial`."""
"""Implement `partial`."""
func
=
args
[
0
].
__call__
func
=
args
[
0
].
__call__
...
@@ -133,10 +133,14 @@ def partial(*args):
...
@@ -133,10 +133,14 @@ def partial(*args):
return
partial_func
return
partial_func
# only used in PyNative mode
s
# only used in PyNative mode
def
depend
(
value
,
expr
):
def
depend
(
value
,
expr
):
return
value
return
value
# only used in PyNative mode
def
make_ref
(
key
,
value
,
ref
):
return
value
def
scalar_cast
(
x
,
t
):
def
scalar_cast
(
x
,
t
):
"""Implement scalar_cast."""
"""Implement scalar_cast."""
...
...
mindspore/ccsrc/pipeline/pipeline.cc
浏览文件 @
75fec82b
...
@@ -616,17 +616,19 @@ py::object ExecutorPy::Run(const py::tuple& args, const py::object& phase) {
...
@@ -616,17 +616,19 @@ py::object ExecutorPy::Run(const py::tuple& args, const py::object& phase) {
return
ExecDFGraph
(
info_
,
args
,
phase_s
);
return
ExecDFGraph
(
info_
,
args
,
phase_s
);
}
}
#else
#else
if
(
backend
==
"ge"
)
{
if
(
backend
==
"
ms"
||
backend
==
"
ge"
)
{
std
::
shared_ptr
<
py
::
object
>
ret_val
=
std
::
make_shared
<
py
::
object
>
();
auto
ret_val
=
std
::
make_shared
<
py
::
object
>
();
if
(
info_
.
count
(
phase_s
)
!=
0
&&
info_
[
phase_s
]
->
func_graph
!=
nullptr
)
{
if
(
info_
.
count
(
phase_s
)
!=
0
&&
info_
[
phase_s
]
->
func_graph
!=
nullptr
)
{
if
(
IsGraphOutputValueNodeOrParameter
(
info_
[
phase_s
]
->
func_graph
->
output
(),
args
,
ret_val
))
{
if
(
IsGraphOutputValueNodeOrParameter
(
info_
[
phase_s
]
->
func_graph
->
output
(),
args
,
ret_val
))
{
return
*
ret_val
;
return
*
ret_val
;
}
}
}
}
if
(
args
.
size
()
>
0
)
{
if
(
backend
==
"ge"
)
{
return
args
[
0
];
if
(
args
.
size
()
>
0
)
{
return
args
[
0
];
}
return
args
;
}
}
return
args
;
}
}
#endif
#endif
std
::
size_t
full_arg_size
=
ArgListSize
(
phase_s
);
std
::
size_t
full_arg_size
=
ArgListSize
(
phase_s
);
...
...
mindspore/ccsrc/pynative/pynative_execute.cc
浏览文件 @
75fec82b
...
@@ -20,11 +20,13 @@
...
@@ -20,11 +20,13 @@
#include <map>
#include <map>
#include <set>
#include <set>
#include <unordered_set>
#include <unordered_set>
#include <algorithm>
#include "utils/any.h"
#include "utils/any.h"
#include "utils/utils.h"
#include "utils/utils.h"
#include "utils/context/ms_context.h"
#include "utils/context/ms_context.h"
#include "operator/ops.h"
#include "operator/ops.h"
#include "operator/composite/do_signature.h"
#include "pipeline/parse/data_converter.h"
#include "pipeline/parse/data_converter.h"
#include "pipeline/static_analysis/prim.h"
#include "pipeline/static_analysis/prim.h"
#include "session/session_factory.h"
#include "session/session_factory.h"
...
@@ -50,6 +52,57 @@ inline ValuePtr PyAttrValue(const py::object& obj) {
...
@@ -50,6 +52,57 @@ inline ValuePtr PyAttrValue(const py::object& obj) {
return
converted_ret
;
return
converted_ret
;
}
}
py
::
tuple
ConvertInputs
(
const
PrimitivePyPtr
&
prim
,
const
py
::
tuple
&
py_args
)
{
auto
signature
=
prim
->
signatures
();
std
::
vector
<
SignatureEnumDType
>
dtypes
;
(
void
)
std
::
transform
(
signature
.
begin
(),
signature
.
end
(),
std
::
back_inserter
(
dtypes
),
[](
const
Signature
&
sig
)
{
return
sig
.
dtype
;
});
int
empty_dtype_count
=
std
::
count
(
dtypes
.
begin
(),
dtypes
.
end
(),
SignatureEnumDType
::
kDTypeEmptyDefaultValue
);
if
(
dtypes
.
size
()
==
0
||
static_cast
<
int
>
(
dtypes
.
size
())
==
empty_dtype_count
)
{
return
py_args
;
}
std
::
map
<
SignatureEnumDType
,
std
::
vector
<
size_t
>>
type_indexs
;
for
(
size_t
i
=
0
;
i
<
dtypes
.
size
();
++
i
)
{
auto
it
=
type_indexs
.
find
(
dtypes
[
i
]);
if
(
it
==
type_indexs
.
end
())
{
(
void
)
type_indexs
.
insert
(
std
::
make_pair
(
dtypes
[
i
],
std
::
vector
<
size_t
>
{
i
}));
}
else
{
it
->
second
.
push_back
(
i
);
}
}
std
::
map
<
SignatureEnumDType
,
size_t
>
dst_type
;
for
(
auto
it
=
type_indexs
.
begin
();
it
!=
type_indexs
.
end
();
(
void
)
++
it
)
{
auto
type
=
it
->
first
;
auto
indexs
=
it
->
second
;
if
(
indexs
.
size
()
<
2
)
{
continue
;
}
size_t
m_index
=
indexs
[
0
];
for
(
size_t
i
=
1
;
i
<
indexs
.
size
();
++
i
)
{
if
(
py
::
isinstance
<
tensor
::
Tensor
>
(
py_args
[
indexs
[
i
]]))
{
m_index
=
indexs
[
i
];
}
}
(
void
)
dst_type
.
insert
(
std
::
make_pair
(
type
,
m_index
));
}
py
::
tuple
py_inputs
(
py_args
.
size
());
for
(
size_t
i
=
0
;
i
<
py_args
.
size
();
++
i
)
{
auto
it
=
dst_type
.
find
(
dtypes
[
i
]);
if
(
it
!=
dst_type
.
end
()
&&
it
->
second
!=
i
&&
(
py
::
isinstance
<
py
::
int_
>
(
py_args
[
i
])
||
py
::
isinstance
<
py
::
float_
>
(
py_args
[
i
])))
{
auto
tensor_ptr
=
py
::
cast
<
tensor
::
TensorPtr
>
(
py_args
[
it
->
second
]);
if
(
py
::
isinstance
<
py
::
int_
>
(
py_args
[
i
]))
{
py_inputs
[
i
]
=
std
::
make_shared
<
tensor
::
Tensor
>
(
py
::
cast
<
py
::
int_
>
(
py_args
[
i
]),
tensor_ptr
->
Dtype
());
}
else
{
py_inputs
[
i
]
=
std
::
make_shared
<
tensor
::
Tensor
>
(
py
::
cast
<
py
::
float_
>
(
py_args
[
i
]),
tensor_ptr
->
Dtype
());
}
continue
;
}
py_inputs
[
i
]
=
py_args
[
i
];
}
return
py_inputs
;
}
void
PynativeInfer
(
const
PrimitivePyPtr
&
prim
,
const
py
::
tuple
&
py_args
,
OpExecInfo
*
const
op_exec_info
)
{
void
PynativeInfer
(
const
PrimitivePyPtr
&
prim
,
const
py
::
tuple
&
py_args
,
OpExecInfo
*
const
op_exec_info
)
{
size_t
size
=
py_args
.
size
();
size_t
size
=
py_args
.
size
();
AbstractBasePtrList
args_spec_list
;
AbstractBasePtrList
args_spec_list
;
...
@@ -73,30 +126,22 @@ OpExecInfoPtr GenerateOpExecInfo(const py::args& args) {
...
@@ -73,30 +126,22 @@ OpExecInfoPtr GenerateOpExecInfo(const py::args& args) {
auto
op_exec_info
=
std
::
make_shared
<
OpExecInfo
>
();
auto
op_exec_info
=
std
::
make_shared
<
OpExecInfo
>
();
MS_EXCEPTION_IF_NULL
(
op_exec_info
);
MS_EXCEPTION_IF_NULL
(
op_exec_info
);
op_exec_info
->
op_name
=
py
::
cast
<
std
::
string
>
(
args
[
PY_NAME
]);
op_exec_info
->
op_name
=
py
::
cast
<
std
::
string
>
(
args
[
PY_NAME
]);
if
(
py
::
isinstance
<
py
::
none
>
(
args
[
PY_PRIM
]))
{
auto
prim
=
py
::
cast
<
PrimitivePyPtr
>
(
args
[
PY_PRIM
]);
py
::
module
ops_mod
=
py
::
module
::
import
(
"mindspore.ops.operations"
);
auto
pyobj
=
prim
->
GetPyObj
();
py
::
object
py_primitive
=
ops_mod
.
attr
(
op_exec_info
->
op_name
.
c_str
())();
if
(
pyobj
==
nullptr
)
{
op_exec_info
->
py_primitive
=
py
::
cast
<
PrimitivePyPtr
>
(
py_primitive
);
MS_LOG
(
EXCEPTION
)
<<
"pyobj is empty"
;
py
::
dict
none_attrs
=
py
::
dict
();
}
op_exec_info
->
op_attrs
=
none_attrs
;
py
::
tuple
py_args
=
ConvertInputs
(
prim
,
args
[
PY_INPUTS
]);
}
else
{
// use python infer method
PrimitivePyPtr
prim
=
py
::
cast
<
PrimitivePyPtr
>
(
args
[
PY_PRIM
]);
if
(
ignore_infer_prim
.
find
(
op_exec_info
->
op_name
)
==
ignore_infer_prim
.
end
())
{
auto
pyobj
=
prim
->
GetPyObj
();
PynativeInfer
(
prim
,
py_args
,
op_exec_info
.
get
());
if
(
pyobj
==
nullptr
)
{
MS_LOG
(
EXCEPTION
)
<<
"pyobj is empty"
;
}
py
::
tuple
py_args
=
args
[
PY_INPUTS
];
// use python infer method
if
(
ignore_infer_prim
.
find
(
op_exec_info
->
op_name
)
==
ignore_infer_prim
.
end
())
{
PynativeInfer
(
prim
,
py_args
,
op_exec_info
.
get
());
}
op_exec_info
->
py_primitive
=
prim
;
op_exec_info
->
op_attrs
=
py
::
getattr
(
args
[
PY_PRIM
],
"attrs"
);
}
}
op_exec_info
->
op_inputs
=
args
[
PY_INPUTS
];
op_exec_info
->
py_primitive
=
prim
;
op_exec_info
->
op_attrs
=
py
::
getattr
(
args
[
PY_PRIM
],
"attrs"
);
op_exec_info
->
op_inputs
=
py_args
;
op_exec_info
->
inputs_mask
=
args
[
PY_INPUT_MASK
];
op_exec_info
->
inputs_mask
=
args
[
PY_INPUT_MASK
];
if
(
op_exec_info
->
op_inputs
.
size
()
!=
op_exec_info
->
inputs_mask
.
size
())
{
if
(
op_exec_info
->
op_inputs
.
size
()
!=
op_exec_info
->
inputs_mask
.
size
())
{
MS_LOG
(
ERROR
)
<<
"
"
<<
op_exec_info
->
op_name
<<
" op_
inputs size not equal op_mask"
;
MS_LOG
(
ERROR
)
<<
"
op:"
<<
op_exec_info
->
op_name
<<
"
inputs size not equal op_mask"
;
return
nullptr
;
return
nullptr
;
}
}
return
op_exec_info
;
return
op_exec_info
;
...
...
mindspore/common/parameter.py
浏览文件 @
75fec82b
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
# ============================================================================
# ============================================================================
"""Parameter for cell."""
"""Parameter for cell."""
from
copy
import
copy
from
copy
import
copy
,
deepcopy
import
numpy
as
np
import
numpy
as
np
from
.initializer
import
initializer
from
.initializer
import
initializer
from
.tensor
import
Tensor
from
.tensor
import
Tensor
...
@@ -156,16 +156,24 @@ class Parameter:
...
@@ -156,16 +156,24 @@ class Parameter:
return
self
.
default_input
return
self
.
default_input
def
__add__
(
self
,
other
):
def
__add__
(
self
,
other
):
return
self
.
default_input
+
other
res
=
deepcopy
(
self
)
res
.
default_input
=
res
.
default_input
+
other
return
res
def
__sub__
(
self
,
other
):
def
__sub__
(
self
,
other
):
return
self
.
default_input
-
other
res
=
deepcopy
(
self
)
res
.
default_input
=
res
.
default_input
-
other
return
res
def
__mul__
(
self
,
other
):
def
__mul__
(
self
,
other
):
return
self
.
default_input
*
other
res
=
deepcopy
(
self
)
res
.
default_input
=
res
.
default_input
*
other
return
res
def
__truediv__
(
self
,
other
):
def
__truediv__
(
self
,
other
):
return
self
.
default_input
/
other
res
=
deepcopy
(
self
)
res
.
default_input
=
res
.
default_input
/
other
return
res
def
set_parameter_data
(
self
,
data
):
def
set_parameter_data
(
self
,
data
):
if
isinstance
(
data
,
(
Tensor
,
list
,
int
,
float
,
if
isinstance
(
data
,
(
Tensor
,
list
,
int
,
float
,
...
...
mindspore/common/tensor.py
浏览文件 @
75fec82b
...
@@ -70,45 +70,60 @@ class Tensor(Tensor_):
...
@@ -70,45 +70,60 @@ class Tensor(Tensor_):
return
str
(
self
.
__str__
())
return
str
(
self
.
__str__
())
def
__add__
(
self
,
other
):
def
__add__
(
self
,
other
):
if
not
isinstance
(
other
,
Tensor
):
check_type
(
'tensor input_data'
,
other
,
(
Tensor
,
float
,
int
))
raise
TypeError
(
"input_data must be a tensor"
)
out
=
tensor_operator_registry
.
get
(
'__add__'
)(
self
,
other
)
out
=
tensor_operator_registry
.
get
(
'__add__'
)(
self
,
other
)
return
out
return
out
def
__mul__
(
self
,
other
):
def
__mul__
(
self
,
other
):
if
not
isinstance
(
other
,
Tensor
):
check_type
(
'tensor input_data'
,
other
,
(
Tensor
,
float
,
int
))
raise
TypeError
(
"input_data must be a tensor"
)
out
=
tensor_operator_registry
.
get
(
'__mul__'
)(
self
,
other
)
out
=
tensor_operator_registry
.
get
(
'__mul__'
)(
self
,
other
)
return
out
return
out
def
__neg__
(
self
):
return
Tensor
(
-
self
.
asnumpy
())
def
__iadd__
(
self
,
other
):
def
__iadd__
(
self
,
other
):
out
=
self
.
__add__
(
other
)
out
=
self
.
__add__
(
other
)
return
out
return
out
def
__radd__
(
self
,
other
):
check_type
(
'tensor operation input'
,
other
,
(
Tensor
,
float
,
int
))
out
=
tensor_operator_registry
.
get
(
'__add__'
)(
other
,
self
)
return
out
def
__imul__
(
self
,
other
):
def
__imul__
(
self
,
other
):
out
=
self
.
__mul__
(
other
)
out
=
self
.
__mul__
(
other
)
return
out
return
out
def
__rmul__
(
self
,
other
):
check_type
(
'tensor operation input'
,
other
,
(
Tensor
,
float
,
int
))
out
=
tensor_operator_registry
.
get
(
'__mul__'
)(
other
,
self
)
return
out
def
__truediv__
(
self
,
other
):
def
__truediv__
(
self
,
other
):
if
isinstance
(
other
,
(
int
,
float
)):
check_type
(
'tensor operation input'
,
other
,
(
Tensor
,
float
,
int
))
other_tensor
=
Tensor
(
other
,
self
.
dtype
()
)
out
=
tensor_operator_registry
.
get
(
'__div__'
)(
self
,
other
)
elif
isinstance
(
other
,
Tensor
):
return
out
other_tensor
=
other
else
:
def
__rtruediv__
(
self
,
other
)
:
raise
TypeError
(
"unsupported type for div operation"
)
check_type
(
'tensor operation input'
,
other
,
(
Tensor
,
float
,
int
)
)
out
=
tensor_operator_registry
.
get
(
'__div__'
)(
self
,
other_tensor
)
out
=
tensor_operator_registry
.
get
(
'__div__'
)(
other
,
self
)
return
out
return
out
def
__sub__
(
self
,
other
):
def
__sub__
(
self
,
other
):
if
not
isinstance
(
other
,
Tensor
):
check_type
(
'tensor operation input'
,
other
,
(
Tensor
,
float
,
int
))
raise
TypeError
(
"input_data must be a tensor"
)
out
=
self
.
__add__
(
-
other
)
out
=
self
.
__add__
(
Tensor
(
-
other
.
asnumpy
()))
return
out
return
out
def
__isub__
(
self
,
other
):
def
__isub__
(
self
,
other
):
out
=
self
.
__sub__
(
other
)
out
=
self
.
__sub__
(
other
)
return
out
return
out
def
__rsub__
(
self
,
other
):
check_type
(
'tensor operation input'
,
other
,
(
Tensor
,
float
,
int
))
out
=
tensor_operator_registry
.
get
(
'__add__'
)(
other
,
Tensor
(
-
self
.
asnumpy
()))
return
out
def
__str__
(
self
):
def
__str__
(
self
):
if
self
.
dtype
()
==
mstype
.
type_none
:
if
self
.
dtype
()
==
mstype
.
type_none
:
return
"Unknown Tensor type!"
return
"Unknown Tensor type!"
...
...
mindspore/ops/_grad/grad_array_ops.py
浏览文件 @
75fec82b
...
@@ -191,7 +191,7 @@ def get_bprop_concat(self):
...
@@ -191,7 +191,7 @@ def get_bprop_concat(self):
def
bprop
(
x
,
out
,
dout
):
def
bprop
(
x
,
out
,
dout
):
dx
=
()
dx
=
()
out_offset
=
P
.
ConcatOffset
(
F
.
tuple_len
(
x
),
axis
)(
x
)
out_offset
=
G
.
ConcatOffset
(
F
.
tuple_len
(
x
),
axis
)(
x
)
for
i
in
range
(
F
.
tuple_len
(
x
)):
for
i
in
range
(
F
.
tuple_len
(
x
)):
slice_out
=
P
.
Slice
()(
dout
,
out_offset
[
i
],
shape_op
(
x
[
i
]))
slice_out
=
P
.
Slice
()(
dout
,
out_offset
[
i
],
shape_op
(
x
[
i
]))
dx
=
dx
+
(
slice_out
,)
dx
=
dx
+
(
slice_out
,)
...
...
mindspore/ops/_utils/__init__.py
浏览文件 @
75fec82b
...
@@ -14,6 +14,6 @@
...
@@ -14,6 +14,6 @@
# ============================================================================
# ============================================================================
"""ops utils."""
"""ops utils."""
from
.
broadcast
import
_get_broadcast_shape
from
.
utils
import
_get_broadcast_shape
,
_get_concat_offset
__all__
=
[
'_get_broadcast_shape'
]
__all__
=
[
'_get_broadcast_shape'
,
'_get_concat_offset'
]
mindspore/ops/_utils/
broadcast
.py
→
mindspore/ops/_utils/
utils
.py
浏览文件 @
75fec82b
...
@@ -13,8 +13,11 @@
...
@@ -13,8 +13,11 @@
# limitations under the License.
# limitations under the License.
# ============================================================================
# ============================================================================
"""
broadcast
"""
"""
utils for operator
"""
from
..._checkparam
import
ParamValidator
as
validator
from
..._checkparam
import
Rel
from
...common
import
dtype
as
mstype
def
_get_broadcast_shape
(
x_shape
,
y_shape
,
prim_name
):
def
_get_broadcast_shape
(
x_shape
,
y_shape
,
prim_name
):
"""
"""
...
@@ -57,3 +60,27 @@ def _get_broadcast_shape(x_shape, y_shape, prim_name):
...
@@ -57,3 +60,27 @@ def _get_broadcast_shape(x_shape, y_shape, prim_name):
broadcast_shape_front
=
y_shape
[
0
:
y_len
-
length
]
if
length
==
x_len
else
x_shape
[
0
:
x_len
-
length
]
broadcast_shape_front
=
y_shape
[
0
:
y_len
-
length
]
if
length
==
x_len
else
x_shape
[
0
:
x_len
-
length
]
broadcast_shape
=
broadcast_shape_front
+
broadcast_shape_back
broadcast_shape
=
broadcast_shape_front
+
broadcast_shape_back
return
broadcast_shape
return
broadcast_shape
def
_get_concat_offset
(
x_shp
,
x_type
,
axis
):
"""for concat and concatoffset check args and compute offset"""
validator
.
check_type
(
"shape"
,
x_shp
,
[
tuple
])
validator
.
check_integer
(
"len of input_x shape"
,
len
(
x_shp
),
0
,
Rel
.
GT
)
validator
.
check_subclass
(
"shape0"
,
x_type
[
0
],
mstype
.
tensor
)
validator
.
check_integer
(
"len of input_x0 shape"
,
len
(
x_shp
[
0
]),
0
,
Rel
.
GT
)
rank_base
=
len
(
x_shp
[
0
])
validator
.
check_int_range
(
'axis'
,
axis
,
-
rank_base
-
1
,
rank_base
,
Rel
.
INC_BOTH
)
if
axis
<
0
:
axis
=
axis
+
rank_base
all_shp
=
x_shp
[
0
][
axis
]
offset
=
[
0
,]
for
i
in
range
(
1
,
len
(
x_shp
)):
v
=
x_shp
[
i
]
validator
.
check
(
'len of x_shp[%d]'
%
i
,
len
(
v
),
'len of base'
,
len
(
x_shp
[
0
]))
validator
.
check
(
'x_type[%d]'
%
i
,
x_type
[
i
],
'base'
,
x_type
[
0
])
for
j
in
range
(
rank_base
):
if
j
!=
axis
and
v
[
j
]
!=
x_shp
[
0
][
j
]:
raise
ValueError
(
"Concat evaluator element %d shape in input can not concat with first element"
%
i
)
offset
.
append
(
all_shp
)
all_shp
+=
v
[
axis
]
return
offset
,
all_shp
,
axis
mindspore/ops/operations/__init__.py
浏览文件 @
75fec82b
...
@@ -19,7 +19,7 @@ Primitive operator classes.
...
@@ -19,7 +19,7 @@ Primitive operator classes.
A collection of operators to build nerual networks or computing functions.
A collection of operators to build nerual networks or computing functions.
"""
"""
from
.array_ops
import
(
Argmax
,
Argmin
,
Cast
,
Concat
Offset
,
Concat
,
Pack
,
Unpack
,
from
.array_ops
import
(
Argmax
,
Argmin
,
Cast
,
Concat
,
Pack
,
Unpack
,
Diag
,
DiagPart
,
DType
,
ExpandDims
,
Eye
,
Diag
,
DiagPart
,
DType
,
ExpandDims
,
Eye
,
Fill
,
GatherNd
,
GatherV2
,
InvertPermutation
,
Fill
,
GatherNd
,
GatherV2
,
InvertPermutation
,
IsInstance
,
IsSubClass
,
ArgMaxWithValue
,
OnesLike
,
ZerosLike
,
IsInstance
,
IsSubClass
,
ArgMaxWithValue
,
OnesLike
,
ZerosLike
,
...
@@ -200,7 +200,6 @@ __all__ = [
...
@@ -200,7 +200,6 @@ __all__ = [
'LogicalOr'
,
'LogicalOr'
,
'Size'
,
'Size'
,
'DepthwiseConv2dNative'
,
'DepthwiseConv2dNative'
,
'ConcatOffset'
,
'UnsortedSegmentSum'
,
'UnsortedSegmentSum'
,
"AllGather"
,
"AllGather"
,
"AllReduce"
,
"AllReduce"
,
...
...
mindspore/ops/operations/_grad_ops.py
浏览文件 @
75fec82b
...
@@ -20,6 +20,7 @@ from ..._c_expression import signature_kind as sig_kind
...
@@ -20,6 +20,7 @@ from ..._c_expression import signature_kind as sig_kind
from
..primitive
import
Primitive
,
PrimitiveWithInfer
,
prim_attr_register
from
..primitive
import
Primitive
,
PrimitiveWithInfer
,
prim_attr_register
from
..._checkparam
import
ParamValidator
as
validator
from
..._checkparam
import
ParamValidator
as
validator
from
..._checkparam
import
Rel
,
check_int_positive
,
check_bool
from
..._checkparam
import
Rel
,
check_int_positive
,
check_bool
from
.._utils
import
_get_concat_offset
from
...common
import
dtype
as
mstype
from
...common
import
dtype
as
mstype
...
@@ -107,6 +108,33 @@ class BinaryCrossEntropyGrad(PrimitiveWithInfer):
...
@@ -107,6 +108,33 @@ class BinaryCrossEntropyGrad(PrimitiveWithInfer):
validator
.
check_two_types_same
(
'x_type'
,
x_type
,
'weight_type'
,
weight_type
)
validator
.
check_two_types_same
(
'x_type'
,
x_type
,
'weight_type'
,
weight_type
)
return
x_type
return
x_type
class
ConcatOffset
(
PrimitiveWithInfer
):
"""primitive for computing Concat's gradient."""
@
prim_attr_register
def
__init__
(
self
,
N
=
2
,
axis
=
0
):
"""init ConcatOffset"""
def
__infer__
(
self
,
input_x
):
axis
=
self
.
axis
x_shp
=
input_x
[
'shape'
]
x_type
=
input_x
[
'dtype'
]
offset
,
_
,
axis
=
_get_concat_offset
(
x_shp
,
x_type
,
axis
)
self
.
add_prim_attr
(
'T'
,
x_type
[
0
].
element_type
())
offset_values
=
[]
for
i
in
range
(
len
(
x_shp
)):
values
=
[]
for
j
in
range
(
len
(
x_shp
[
0
])):
value
=
0
if
j
==
axis
:
value
=
offset
[
i
]
values
.
append
(
value
)
offset_values
.
append
(
tuple
(
values
))
out
=
{
'shape'
:
None
,
'dtype'
:
None
,
'value'
:
tuple
(
offset_values
)}
return
out
class
Conv2DBackpropFilter
(
PrimitiveWithInfer
):
class
Conv2DBackpropFilter
(
PrimitiveWithInfer
):
"""
"""
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
75fec82b
...
@@ -29,6 +29,7 @@ from ..._checkparam import Rel
...
@@ -29,6 +29,7 @@ from ..._checkparam import Rel
from
...common
import
dtype
as
mstype
from
...common
import
dtype
as
mstype
from
...common.tensor
import
Tensor
from
...common.tensor
import
Tensor
from
..operations.math_ops
import
_infer_shape_reduce
from
..operations.math_ops
import
_infer_shape_reduce
from
.._utils
import
_get_concat_offset
from
..primitive
import
Primitive
,
PrimitiveWithInfer
,
prim_attr_register
from
..primitive
import
Primitive
,
PrimitiveWithInfer
,
prim_attr_register
def
_check_infer_attr_reduce
(
axis
,
keep_dims
):
def
_check_infer_attr_reduce
(
axis
,
keep_dims
):
...
@@ -1275,30 +1276,6 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
...
@@ -1275,30 +1276,6 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
return
out
return
out
def
_get_concat_offset
(
x_shp
,
x_type
,
axis
):
"""for concat and concatoffset check args and compute offset"""
validator
.
check_type
(
"shape"
,
x_shp
,
[
tuple
])
validator
.
check_integer
(
"len of input_x shape"
,
len
(
x_shp
),
0
,
Rel
.
GT
)
validator
.
check_subclass
(
"shape0"
,
x_type
[
0
],
mstype
.
tensor
)
validator
.
check_integer
(
"len of input_x0 shape"
,
len
(
x_shp
[
0
]),
0
,
Rel
.
GT
)
rank_base
=
len
(
x_shp
[
0
])
validator
.
check_int_range
(
'axis'
,
axis
,
-
rank_base
-
1
,
rank_base
,
Rel
.
INC_BOTH
)
if
axis
<
0
:
axis
=
axis
+
rank_base
all_shp
=
x_shp
[
0
][
axis
]
offset
=
[
0
,]
for
i
in
range
(
1
,
len
(
x_shp
)):
v
=
x_shp
[
i
]
validator
.
check
(
'len of x_shp[%d]'
%
i
,
len
(
v
),
'len of base'
,
len
(
x_shp
[
0
]))
validator
.
check
(
'x_type[%d]'
%
i
,
x_type
[
i
],
'base'
,
x_type
[
0
])
for
j
in
range
(
rank_base
):
if
j
!=
axis
and
v
[
j
]
!=
x_shp
[
0
][
j
]:
raise
ValueError
(
"Concat evaluator element %d shape in input can not concat with first element"
%
i
)
offset
.
append
(
all_shp
)
all_shp
+=
v
[
axis
]
return
offset
,
all_shp
,
axis
class
Concat
(
PrimitiveWithInfer
):
class
Concat
(
PrimitiveWithInfer
):
r
"""
r
"""
Concat tensor in specified axis.
Concat tensor in specified axis.
...
@@ -1531,34 +1508,6 @@ class Slice(PrimitiveWithInfer):
...
@@ -1531,34 +1508,6 @@ class Slice(PrimitiveWithInfer):
'value'
:
None
}
'value'
:
None
}
class
ConcatOffset
(
PrimitiveWithInfer
):
"""primitive for computing Concat's gradient."""
@
prim_attr_register
def
__init__
(
self
,
N
=
2
,
axis
=
0
):
"""init ConcatOffset"""
def
__infer__
(
self
,
input_x
):
axis
=
self
.
axis
x_shp
=
input_x
[
'shape'
]
x_type
=
input_x
[
'dtype'
]
offset
,
_
,
axis
=
_get_concat_offset
(
x_shp
,
x_type
,
axis
)
self
.
add_prim_attr
(
'T'
,
x_type
[
0
].
element_type
())
offset_values
=
[]
for
i
in
range
(
len
(
x_shp
)):
values
=
[]
for
j
in
range
(
len
(
x_shp
[
0
])):
value
=
0
if
j
==
axis
:
value
=
offset
[
i
]
values
.
append
(
value
)
offset_values
.
append
(
tuple
(
values
))
out
=
{
'shape'
:
None
,
'dtype'
:
None
,
'value'
:
tuple
(
offset_values
)}
return
out
class
Select
(
PrimitiveWithInfer
):
class
Select
(
PrimitiveWithInfer
):
r
"""
r
"""
...
...
mindspore/ops/operations/other_ops.py
浏览文件 @
75fec82b
...
@@ -271,3 +271,6 @@ class MakeRefKey(Primitive):
...
@@ -271,3 +271,6 @@ class MakeRefKey(Primitive):
@
prim_attr_register
@
prim_attr_register
def
__init__
(
self
,
tag
):
def
__init__
(
self
,
tag
):
validator
.
check_type
(
'tag'
,
tag
,
(
str
,))
validator
.
check_type
(
'tag'
,
tag
,
(
str
,))
def
__call__
(
self
):
pass
tests/ut/python/ir/test_tensor.py
浏览文件 @
75fec82b
...
@@ -24,6 +24,7 @@ import pytest
...
@@ -24,6 +24,7 @@ import pytest
import
mindspore
as
ms
import
mindspore
as
ms
import
mindspore.common.api
as
me
import
mindspore.common.api
as
me
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.common.parameter
import
Parameter
from
mindspore.common.parameter
import
Parameter
from
mindspore.common.initializer
import
initializer
from
mindspore.common.initializer
import
initializer
from
..ut_filter
import
non_graph_engine
from
..ut_filter
import
non_graph_engine
...
@@ -396,3 +397,24 @@ def test_tensor_dtype_fp32_to_bool():
...
@@ -396,3 +397,24 @@ def test_tensor_dtype_fp32_to_bool():
input
=
ms
.
Tensor
(
input
)
input
=
ms
.
Tensor
(
input
)
input_me
=
ms
.
Tensor
(
input
,
dtype
=
ms
.
bool_
)
input_me
=
ms
.
Tensor
(
input
,
dtype
=
ms
.
bool_
)
def
test_tensor_operation
():
x
=
Tensor
(
np
.
ones
((
3
,
3
))
*
4
)
res
=
x
+
1
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
5
)
res
=
1
+
x
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
5
)
res
=
x
-
2
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
2
)
res
=
6
-
x
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
2
)
res
=
x
*
3
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
12
)
res
=
3
*
x
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
12
)
res
=
x
/
2
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
2
)
res
=
8
/
x
assert
np
.
all
(
res
.
asnumpy
()
==
np
.
ones
((
3
,
3
))
*
2
)
with
pytest
.
raises
(
TypeError
):
res
=
x
*
(
2
,
3
)
tests/vm_impl/array_ops_vm_impl.py
浏览文件 @
75fec82b
...
@@ -190,7 +190,7 @@ def vm_impl_slice(self):
...
@@ -190,7 +190,7 @@ def vm_impl_slice(self):
return
vm_impl
return
vm_impl
@
vm_impl_getters
.
register
(
P
.
ConcatOffset
)
@
vm_impl_getters
.
register
(
P
.
_grad_ops
.
ConcatOffset
)
def
vm_impl_concatOffset
(
self
):
def
vm_impl_concatOffset
(
self
):
"""Generate vm_impl function for ConcatOffset"""
"""Generate vm_impl function for ConcatOffset"""
def
vm_impl
(
x
):
def
vm_impl
(
x
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录