提交 751b5e6f 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2897 Modify VOCDataset output float dtype bbox

Merge pull request !2897 from xiefangqi/md_voc_support_float
......@@ -69,7 +69,7 @@ Status VOCOp::Builder::Build(std::shared_ptr<VOCOp> *ptr) {
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
ColDescriptor(std::string(kColumnAnnotation), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
ColDescriptor(std::string(kColumnAnnotation), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
}
*ptr = std::make_shared<VOCOp>(builder_task_type_, builder_task_mode_, builder_dir_, builder_labels_to_read_,
builder_num_workers_, builder_rows_per_buffer_, builder_op_connector_size_,
......@@ -308,30 +308,30 @@ Status VOCOp::ParseAnnotationBbox(const std::string &path) {
}
while (object != nullptr) {
std::string label_name;
uint32_t xmin = 0, ymin = 0, xmax = 0, ymax = 0, truncated = 0, difficult = 0;
float xmin = 0.0, ymin = 0.0, xmax = 0.0, ymax = 0.0, truncated = 0.0, difficult = 0.0;
XMLElement *name_node = object->FirstChildElement("name");
if (name_node != nullptr && name_node->GetText() != 0) label_name = name_node->GetText();
XMLElement *truncated_node = object->FirstChildElement("truncated");
if (truncated_node != nullptr) truncated = truncated_node->UnsignedText();
if (truncated_node != nullptr) truncated = truncated_node->FloatText();
XMLElement *difficult_node = object->FirstChildElement("difficult");
if (difficult_node != nullptr) difficult = difficult_node->UnsignedText();
if (difficult_node != nullptr) difficult = difficult_node->FloatText();
XMLElement *bbox_node = object->FirstChildElement("bndbox");
if (bbox_node != nullptr) {
XMLElement *xmin_node = bbox_node->FirstChildElement("xmin");
if (xmin_node != nullptr) xmin = xmin_node->UnsignedText();
if (xmin_node != nullptr) xmin = xmin_node->FloatText();
XMLElement *ymin_node = bbox_node->FirstChildElement("ymin");
if (ymin_node != nullptr) ymin = ymin_node->UnsignedText();
if (ymin_node != nullptr) ymin = ymin_node->FloatText();
XMLElement *xmax_node = bbox_node->FirstChildElement("xmax");
if (xmax_node != nullptr) xmax = xmax_node->UnsignedText();
if (xmax_node != nullptr) xmax = xmax_node->FloatText();
XMLElement *ymax_node = bbox_node->FirstChildElement("ymax");
if (ymax_node != nullptr) ymax = ymax_node->UnsignedText();
if (ymax_node != nullptr) ymax = ymax_node->FloatText();
} else {
RETURN_STATUS_UNEXPECTED("bndbox dismatch in " + path);
}
if (label_name != "" && (class_index_.empty() || class_index_.find(label_name) != class_index_.end()) && xmin > 0 &&
ymin > 0 && xmax > xmin && ymax > ymin) {
std::vector<uint32_t> bbox_list = {xmin, ymin, xmax - xmin, ymax - ymin, truncated, difficult};
std::vector<float> bbox_list = {xmin, ymin, xmax - xmin, ymax - ymin, truncated, difficult};
bbox.emplace_back(std::make_pair(label_name, bbox_list));
label_index_[label_name] = 0;
}
......@@ -376,17 +376,17 @@ Status VOCOp::ReadImageToTensor(const std::string &path, const ColDescriptor &co
Status VOCOp::ReadAnnotationToTensor(const std::string &path, const ColDescriptor &col,
std::shared_ptr<Tensor> *tensor) {
Bbox bbox_info = label_map_[path];
std::vector<uint32_t> bbox_row;
std::vector<float> bbox_row;
dsize_t bbox_column_num = 0, bbox_num = 0;
for (auto box : bbox_info) {
if (label_index_.find(box.first) != label_index_.end()) {
std::vector<uint32_t> bbox;
std::vector<float> bbox;
bbox.insert(bbox.end(), box.second.begin(), box.second.end());
if (class_index_.find(box.first) != class_index_.end()) {
bbox.emplace_back(class_index_[box.first]);
bbox.push_back(static_cast<float>(class_index_[box.first]));
} else {
bbox.emplace_back(label_index_[box.first]);
bbox.push_back(static_cast<float>(label_index_[box.first]));
}
bbox.insert(bbox.end(), box.second.begin(), box.second.end());
bbox_row.insert(bbox_row.end(), bbox.begin(), bbox.end());
if (bbox_column_num == 0) {
bbox_column_num = static_cast<dsize_t>(bbox.size());
......
......@@ -40,7 +40,7 @@ namespace dataset {
template <typename T>
class Queue;
using Bbox = std::vector<std::pair<std::string, std::vector<uint32_t>>>;
using Bbox = std::vector<std::pair<std::string, std::vector<float>>>;
class VOCOp : public ParallelOp, public RandomAccessOp {
public:
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the bounding box augment op in DE
"""
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
if bbox.size == 7:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_bounding_box_augment_with_rotation_op(plot_vis=False):
"""
Test BoundingBoxAugment op (passing rotation op as transform)
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_rotation_op")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# Ratio is set to 1 to apply rotation on all bounding boxes.
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "bounding_box_augment_rotation_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_with_crop_op(plot_vis=False):
"""
Test BoundingBoxAugment op (passing crop op as transform)
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_crop_op")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# Ratio is set to 1 to apply rotation on all bounding boxes.
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(90), 1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "bounding_box_augment_crop_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_valid_ratio_c(plot_vis=False):
"""
Test BoundingBoxAugment op (testing with valid ratio, less than 1.
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_ratio_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
filename = "bounding_box_augment_valid_ratio_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_valid_edge_c(plot_vis=False):
"""
Test BoundingBoxAugment op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_edge_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
# Add column for "annotation"
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "bounding_box_augment_valid_edge_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_invalid_ratio_c():
"""
Test BoundingBoxAugment op with invalid input ratio
"""
logger.info("test_bounding_box_augment_invalid_ratio_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# ratio range is from 0 - 1
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
# maps to fix annotations to minddata standard
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_bounding_box_augment_invalid_bounds_c():
"""
Test BoundingBoxAugment op with invalid bboxes.
"""
logger.info("test_bounding_box_augment_invalid_bounds_c")
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_bounding_box_augment_with_rotation_op(plot_vis=False)
test_bounding_box_augment_with_crop_op(plot_vis=False)
test_bounding_box_augment_valid_ratio_c(plot_vis=False)
test_bounding_box_augment_valid_edge_c(plot_vis=False)
test_bounding_box_augment_invalid_ratio_c()
test_bounding_box_augment_invalid_bounds_c()
......@@ -37,7 +37,7 @@ def test_voc_detection():
for item in data1.create_dict_iterator():
assert item["image"].shape[0] == IMAGE_SHAPE[num]
for bbox in item["annotation"]:
count[bbox[0]] += 1
count[int(bbox[6])] += 1
num += 1
assert num == 9
assert count == [3, 2, 1, 2, 4, 3]
......@@ -55,8 +55,8 @@ def test_voc_class_index():
count = [0, 0, 0, 0, 0, 0]
for item in data1.create_dict_iterator():
for bbox in item["annotation"]:
assert (bbox[0] == 0 or bbox[0] == 1 or bbox[0] == 5)
count[bbox[0]] += 1
assert (int(bbox[6]) == 0 or int(bbox[6]) == 1 or int(bbox[6]) == 5)
count[int(bbox[6])] += 1
num += 1
assert num == 6
assert count == [3, 2, 0, 0, 0, 3]
......@@ -73,8 +73,9 @@ def test_voc_get_class_indexing():
count = [0, 0, 0, 0, 0, 0]
for item in data1.create_dict_iterator():
for bbox in item["annotation"]:
assert (bbox[0] == 0 or bbox[0] == 1 or bbox[0] == 2 or bbox[0] == 3 or bbox[0] == 4 or bbox[0] == 5)
count[bbox[0]] += 1
assert (int(bbox[6]) == 0 or int(bbox[6]) == 1 or int(bbox[6]) == 2 or int(bbox[6]) == 3
or int(bbox[6]) == 4 or int(bbox[6]) == 5)
count[int(bbox[6])] += 1
num += 1
assert num == 9
assert count == [3, 2, 1, 2, 4, 3]
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomCropAndResizeWithBBox op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from mindspore import log as logger
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
# updated VOC dataset with correct annotations
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
if bbox.size == 7:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_random_resized_crop_with_bbox_op_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
tests with MD5 check, expected to pass
"""
logger.info("test_random_resized_crop_with_bbox_op_c")
original_seed = config_get_set_seed(23415)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5), (0.5, 0.5))
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
filename = "random_resized_crop_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_resized_crop_with_bbox_op_edge_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomResizedCropWithBBox Op applied,
tests on dynamically generated edge case, expected to pass
"""
logger.info("test_random_resized_crop_with_bbox_op_edge_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5), (0.5, 0.5))
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
# Test Op added to list of Operations here
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_resized_crop_with_bbox_op_invalid_c():
"""
Tests RandomResizedCropWithBBox on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_random_resized_crop_with_bbox_op_invalid_c")
# Load dataset, only Augmented Dataset as test will raise ValueError
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# If input range of scale is not in the order of (min, max), ValueError will be raised.
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (1, 0.5), (0.5, 0.5))
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
for _ in dataVoc2.create_dict_iterator():
break
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input range is not valid" in str(err)
def test_random_resized_crop_with_bbox_op_invalid2_c():
"""
Tests RandomResizedCropWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_random_resized_crop_with_bbox_op_invalid2_c")
# Load dataset # only loading the to AugDataset as test will fail on this
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# If input range of ratio is not in the order of (min, max), ValueError will be raised.
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (1, 1), (1, 0.5))
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
for _ in dataVoc2.create_dict_iterator():
break
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input range is not valid" in str(err)
def test_random_resized_crop_with_bbox_op_bad_c():
"""
Test RandomCropWithBBox op with invalid bounding boxes, expected to catch multiple errors.
"""
logger.info("test_random_resized_crop_with_bbox_op_bad_c")
test_op = c_vision.RandomResizedCropWithBBox((256, 512), (0.5, 0.5), (0.5, 0.5))
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
test_random_resized_crop_with_bbox_op_c(plot_vis=True)
test_random_resized_crop_with_bbox_op_edge_c(plot_vis=True)
test_random_resized_crop_with_bbox_op_invalid_c()
test_random_resized_crop_with_bbox_op_invalid2_c()
test_random_resized_crop_with_bbox_op_bad_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomCropWithBBox op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.utils as mode
from mindspore import log as logger
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
# updated VOC dataset with correct annotations
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
if bbox.size == 7:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_random_crop_with_bbox_op_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied
"""
logger.info("test_random_crop_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# define test OP with values to match existing Op UT
test_op = c_vision.RandomCropWithBBox([512, 512], [200, 200, 200, 200])
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_crop_with_bbox_op2_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied,
with md5 check, expected to pass
"""
logger.info("test_random_crop_with_bbox_op2_c")
original_seed = config_get_set_seed(593447)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# define test OP with values to match existing Op unit - test
test_op = c_vision.RandomCropWithBBox(512, [200, 200, 200, 200], fill_value=(255, 255, 255))
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
filename = "random_crop_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_crop_with_bbox_op3_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied,
with Padding Mode explicitly passed
"""
logger.info("test_random_crop_with_bbox_op3_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# define test OP with values to match existing Op unit - test
test_op = c_vision.RandomCropWithBBox(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_crop_with_bbox_op_edge_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomCropWithBBox Op applied,
applied on dynamically generated edge case, expected to pass
"""
logger.info("test_random_crop_with_bbox_op_edge_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
# define test OP with values to match existing Op unit - test
test_op = c_vision.RandomCropWithBBox(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
# Test Op added to list of Operations here
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_crop_with_bbox_op_invalid_c():
"""
Test RandomCropWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_random_crop_with_bbox_op_invalid_c")
# Load dataset
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# define test OP with values to match existing Op unit - test
test_op = c_vision.RandomCropWithBBox([512, 512, 375])
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
for _ in dataVoc2.create_dict_iterator():
break
except TypeError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Size should be a single integer" in str(err)
def test_random_crop_with_bbox_op_bad_c():
"""
Tests RandomCropWithBBox Op with invalid bounding boxes, expected to catch multiple errors.
"""
logger.info("test_random_crop_with_bbox_op_bad_c")
test_op = c_vision.RandomCropWithBBox([512, 512], [200, 200, 200, 200])
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
test_random_crop_with_bbox_op_c(plot_vis=True)
test_random_crop_with_bbox_op2_c(plot_vis=True)
test_random_crop_with_bbox_op3_c(plot_vis=True)
test_random_crop_with_bbox_op_edge_c(plot_vis=True)
test_random_crop_with_bbox_op_invalid_c()
test_random_crop_with_bbox_op_bad_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random horizontal flip with bounding boxes op in DE
"""
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
if bbox.size == 7:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_random_horizontal_flip_with_bbox_op_c(plot_vis=False):
"""
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_flip_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False):
"""
Uses a valid non-default input, expect to pass
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_bbox_valid_rand_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(0.6)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "random_horizontal_flip_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False):
"""
Test RandomHorizontalFlipWithBBox op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_horizontal_flip_with_bbox_valid_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
# Add column for "annotation"
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_flip_with_bbox_invalid_prob_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid input probability
"""
logger.info("test_random_horizontal_bbox_invalid_prob_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# Note: Valid range of prob should be [0.0, 1.0]
test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_random_horizontal_flip_with_bbox_invalid_bounds_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
"""
logger.info("test_random_horizontal_bbox_invalid_bounds_c")
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_random_horizontal_flip_with_bbox_op_c(plot_vis=False)
test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_invalid_prob_c()
test_random_horizontal_flip_with_bbox_invalid_bounds_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random resize with bounding boxes op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from mindspore import log as logger
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for (i, box) in enumerate(bboxes):
if box.size == 7:
bboxes[i] = np.roll(box, -1)
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_random_resize_with_bbox_op_rand_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomResizeWithBBox Op applied,
tests with MD5 check, expected to pass
"""
logger.info("test_random_resize_with_bbox_rand_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomResizeWithBBox(200)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "random_resize_with_bbox_op_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_resize_with_bbox_op_edge_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomresizeWithBBox Op applied,
applied on dynamically generated edge case, expected to pass. edge case is when bounding
box has dimensions as the image itself.
"""
logger.info("test_random_resize_with_bbox_op_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomResizeWithBBox(500)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_resize_with_bbox_op_invalid_c():
"""
Test RandomResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_random_resize_with_bbox_op_invalid_c")
try:
# zero value for resize
c_vision.RandomResizeWithBBox(0)
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)
try:
# one of the size values is zero
c_vision.RandomResizeWithBBox((0, 100))
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)
try:
# negative value for resize
c_vision.RandomResizeWithBBox(-10)
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)
try:
# invalid input shape
c_vision.RandomResizeWithBBox((100, 100, 100))
except TypeError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Size should be" in str(err)
def test_random_resize_with_bbox_op_bad_c():
"""
Tests RandomResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger.info("test_random_resize_with_bbox_op_bad_c")
test_op = c_vision.RandomResizeWithBBox((400, 300))
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
test_random_resize_with_bbox_op_rand_c(plot_vis=False)
test_random_resize_with_bbox_op_edge_c(plot_vis=False)
test_random_resize_with_bbox_op_invalid_c()
test_random_resize_with_bbox_op_bad_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomVerticalFlipWithBBox op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from mindspore import log as logger
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
# updated VOC dataset with correct annotations
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
if bbox.size == 7:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_random_vertical_flip_with_bbox_op_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomVerticalFlipWithBBox Op applied
"""
logger.info("test_random_vertical_flip_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomVerticalFlipWithBBox(1)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_vertical_flip_with_bbox_op_rand_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomVerticalFlipWithBBox Op applied,
tests with MD5 check, expected to pass
"""
logger.info("test_random_vertical_flip_with_bbox_op_rand_c")
original_seed = config_get_set_seed(29847)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomVerticalFlipWithBBox(0.8)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "random_vertical_flip_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_vertical_flip_with_bbox_op_edge_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without RandomVerticalFlipWithBBox Op applied,
applied on dynamically generated edge case, expected to pass
"""
logger.info("test_random_vertical_flip_with_bbox_op_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomVerticalFlipWithBBox(1)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
# Test Op added to list of Operations here
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_vertical_flip_with_bbox_op_invalid_c():
"""
Test RandomVerticalFlipWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_random_vertical_flip_with_bbox_op_invalid_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
try:
test_op = c_vision.RandomVerticalFlipWithBBox(2)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
for _ in dataVoc2.create_dict_iterator():
break
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)
def test_random_vertical_flip_with_bbox_op_bad_c():
"""
Tests RandomVerticalFlipWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger.info("test_random_vertical_flip_with_bbox_op_bad_c")
test_op = c_vision.RandomVerticalFlipWithBBox(1)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
test_random_vertical_flip_with_bbox_op_c(plot_vis=True)
test_random_vertical_flip_with_bbox_op_rand_c(plot_vis=True)
test_random_vertical_flip_with_bbox_op_edge_c(plot_vis=True)
test_random_vertical_flip_with_bbox_op_invalid_c()
test_random_vertical_flip_with_bbox_op_bad_c()
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the resize with bounding boxes op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from mindspore import log as logger
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for (i, box) in enumerate(bboxes):
if box.size == 7:
bboxes[i] = np.roll(box, -1)
else:
print("ERROR: Invalid Bounding Box size provided")
break
return bboxes
def test_resize_with_bbox_op_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
tests with MD5 check, expected to pass
"""
logger.info("test_resize_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.ResizeWithBBox(200)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "resize_with_bbox_op_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_resize_with_bbox_op_edge_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
applied on dynamically generated edge case, expected to pass. edge case is when bounding
box has dimensions as the image itself.
"""
logger.info("test_resize_with_bbox_op_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.ResizeWithBBox(500)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])
# Test Op added to list of Operations here
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_resize_with_bbox_op_invalid_c():
"""
Test ResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_resize_with_bbox_op_invalid_c")
try:
# invalid interpolation value
c_vision.ResizeWithBBox(400, interpolation="invalid")
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "interpolation" in str(err)
def test_resize_with_bbox_op_bad_c():
"""
Tests ResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger.info("test_resize_with_bbox_op_bad_c")
test_op = c_vision.ResizeWithBBox((200, 300))
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
test_resize_with_bbox_op_c(plot_vis=False)
test_resize_with_bbox_op_edge_c(plot_vis=False)
test_resize_with_bbox_op_invalid_c()
test_resize_with_bbox_op_bad_c()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册