Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
741154b9
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
741154b9
编写于
6月 30, 2020
作者:
X
xiefangqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix voc/coco docstring problem
上级
fafdfa9a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
37 addition
and
37 deletion
+37
-37
mindspore/dataset/engine/datasets.py
mindspore/dataset/engine/datasets.py
+37
-37
未找到文件。
mindspore/dataset/engine/datasets.py
浏览文件 @
741154b9
...
...
@@ -4036,8 +4036,8 @@ class VOCDataset(MappableDataset):
A source dataset for reading and parsing VOC dataset.
The generated dataset has two columns :
task='Detection' : ['image', 'annotation']
.
task='Segmentation' : ['image', 'target']
task='Detection' : ['image', 'annotation']
;
task='Segmentation' : ['image', 'target']
.
The shape of both column 'image' and 'target' is [image_size] if decode flag is False, or [H, W, C]
otherwise.
The type of both tensor 'image' and 'target' is uint8.
...
...
@@ -4072,20 +4072,20 @@ class VOCDataset(MappableDataset):
- False
- not allowed
Citation of VOC dataset.
Citation of VOC dataset.
.. code-block::
@article{Everingham10,
author = {Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.},
title = {The Pascal Visual Object Classes (VOC) Challenge},
journal = {International Journal of Computer Vision},
volume = {88},
year = {2010},
number = {2},
month = {jun},
pages = {303--338},
biburl = {http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.html#bibtex},
author
= {Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.},
title
= {The Pascal Visual Object Classes (VOC) Challenge},
journal
= {International Journal of Computer Vision},
volume
= {88},
year
= {2010},
number
= {2},
month
= {jun},
pages
= {303--338},
biburl
= {http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.html#bibtex},
howpublished = {http://host.robots.ox.ac.uk/pascal/VOC/voc{year}/index.html},
description = {The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual
object category recognition and detection, providing the vision and machine
...
...
@@ -4096,8 +4096,8 @@ class VOCDataset(MappableDataset):
Args:
dataset_dir (str): Path to the root directory that contains the dataset.
task (str): Set the task type of reading voc data, now only support "Segmentation" or "Detection"
(default="Segmentation")
mode
(str): Set the data list txt file to be readed (default="train")
(default="Segmentation")
.
mode
(str): Set the data list txt file to be readed (default="train").
class_indexing (dict, optional): A str-to-int mapping from label name to index
(default=None, the folder names will be sorted alphabetically and each
class will be given a unique index starting from 0).
...
...
@@ -4116,9 +4116,9 @@ class VOCDataset(MappableDataset):
argument should be specified only when num_shards is also specified.
Raises:
RuntimeError: If xml of Annotations is a invalid format
RuntimeError: If xml of Annotations loss attribution of "object"
RuntimeError: If xml of Annotations loss attribution of "bndbox"
RuntimeError: If xml of Annotations is a invalid format
.
RuntimeError: If xml of Annotations loss attribution of "object"
.
RuntimeError: If xml of Annotations loss attribution of "bndbox"
.
RuntimeError: If sampler and shuffle are specified at the same time.
RuntimeError: If sampler and sharding are specified at the same time.
RuntimeError: If num_shards is specified but shard_id is None.
...
...
@@ -4232,10 +4232,10 @@ class CocoDataset(MappableDataset):
"""
A source dataset for reading and parsing COCO dataset.
CocoDataset support four kinds of task:
2017 Train/Val/Test Detection, Keypoints, Stuff, Panoptic.
CocoDataset support four kinds of task: 2017 Train/Val/Test Detection, Keypoints, Stuff, Panoptic.
The generated dataset has multi-columns :
- task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
['iscrowd', dtype=uint32]].
- task='Stuff', column: [['image', dtype=uint8], ['segmentation',dtype=float32], ['iscrowd',dtype=uint32]].
...
...
@@ -4273,35 +4273,35 @@ class CocoDataset(MappableDataset):
- False
- not allowed
Citation of Coco dataset.
Citation of Coco dataset.
.. code-block::
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and
Lubomir D. Bourdev and Ross B. Girshick and James Hays and
Pietro Perona and Deva Ramanan and Piotr Doll{
\'
{a}}r and C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
author
= {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and
Lubomir D. Bourdev and Ross B. Girshick and James Hays and
Pietro Perona and Deva Ramanan and Piotr Doll{
\'
{a}}r and C. Lawrence Zitnick},
title
= {Microsoft {COCO:} Common Objects in Context},
journal
= {CoRR},
volume
= {abs/1405.0312},
year
= {2014},
url
= {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org},
description = {COCO is a large-scale object detection, segmentation, and captioning dataset.
It contains 91 common object categories with 82 of them having more than 5,000
labeled instances. In contrast to the popular ImageNet dataset, COCO has fewer
categories but more instances per category.}
eprint
= {1405.0312},
timestamp
= {Mon, 13 Aug 2018 16:48:13 +0200},
biburl
= {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
bibsource
= {dblp computer science bibliography, https://dblp.org},
description
= {COCO is a large-scale object detection, segmentation, and captioning dataset.
It contains 91 common object categories with 82 of them having more than 5,000
labeled instances. In contrast to the popular ImageNet dataset, COCO has fewer
categories but more instances per category.}
}
Args:
dataset_dir (str): Path to the root directory that contains the dataset.
annotation_file (str): Path to the annotation json.
task (str): Set the task type of reading coco data, now support 'Detection'/'Stuff'/'Panoptic'/'Keypoint'
(default='Detection')
(default='Detection')
.
num_samples (int, optional): The number of images to be included in the dataset
(default=None, all images).
num_parallel_workers (int, optional): Number of workers to read the data
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录