提交 73bd2e9a 编写于 作者: M meixiaowei

modify weight init

上级 e5fafc5e
......@@ -34,7 +34,6 @@ from mindspore.communication.management import init
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from crossentropy import CrossEntropy
from var_init import default_recurisive_init, KaimingNormal
random.seed(1)
np.random.seed(1)
......@@ -68,8 +67,11 @@ if __name__ == '__main__':
default_recurisive_init(net)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d):
cell.weight.default_input = weight_init.initializer(KaimingNormal(a=math.sqrt(5),
mode='fan_out', nonlinearity='relu'),
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
cell.weight.default_input.shape(),
cell.weight.default_input.dtype())
if isinstance(cell, nn.Dense):
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
cell.weight.default_input.shape(),
cell.weight.default_input.dtype())
if not config.label_smooth:
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""weight initial"""
import math
import numpy as np
from mindspore.common import initializer as init
import mindspore.nn as nn
from mindspore import Tensor
def calculate_gain(nonlinearity, param=None):
r"""Return the recommended gain value for the given nonlinearity function.
The values are as follows:
================= ====================================================
nonlinearity gain
================= ====================================================
Linear / Identity :math:`1`
Conv{1,2,3}D :math:`1`
Sigmoid :math:`1`
Tanh :math:`\frac{5}{3}`
ReLU :math:`\sqrt{2}`
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
================= ====================================================
Args:
nonlinearity: the non-linear function (`nn.functional` name)
param: optional parameter for the non-linear function
"""
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
gain = 0
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
gain = 1
elif nonlinearity == 'tanh':
gain = 5.0 / 3
elif nonlinearity == 'relu':
gain = math.sqrt(2.0)
elif nonlinearity == 'leaky_relu':
if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
# True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param))
gain = math.sqrt(2.0 / (1 + negative_slope ** 2))
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
return gain
def _calculate_correct_fan(array, mode):
mode = mode.lower()
valid_modes = ['fan_in', 'fan_out']
if mode not in valid_modes:
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(array)
return fan_in if mode == 'fan_in' else fan_out
def kaiming_uniform_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
r"""Fills the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a
uniform distribution. The resulting tensor will have values sampled from
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
.. math::
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
Also known as He initialization.
Args:
array: an n-dimensional `tensor`
a: the negative slope of the rectifier used after this layer (only
used with ``'leaky_relu'``)
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity: the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
fan = _calculate_correct_fan(array, mode)
gain = calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
return np.random.uniform(-bound, bound, array.shape)
def kaiming_normal_(array, a=0, mode='fan_in', nonlinearity='leaky_relu'):
r"""Fills the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a
normal distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std}^2)` where
.. math::
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
Also known as He initialization.
Args:
array: an n-dimensional `tensor`
a: the negative slope of the rectifier used after this layer (only
used with ``'leaky_relu'``)
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity: the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
fan = _calculate_correct_fan(array, mode)
gain = calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
return np.random.normal(0, std, array.shape)
def _calculate_fan_in_and_fan_out(array):
"""calculate the fan_in and fan_out for input array"""
dimensions = len(array.shape)
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for array with fewer than 2 dimensions")
num_input_fmaps = array.shape[1]
num_output_fmaps = array.shape[0]
receptive_field_size = 1
if dimensions > 2:
receptive_field_size = array[0][0].size
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def assignment(arr, num):
"""Assign the value of num to arr"""
if arr.shape == ():
arr = arr.reshape((1))
arr[:] = num
arr = arr.reshape(())
else:
if isinstance(num, np.ndarray):
arr[:] = num[:]
else:
arr[:] = num
return arr
class KaimingUniform(init.Initializer):
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'):
super(KaimingUniform, self).__init__()
self.a = a
self.mode = mode
self.nonlinearity = nonlinearity
def _initialize(self, arr):
tmp = kaiming_uniform_(arr, self.a, self.mode, self.nonlinearity)
assignment(arr, tmp)
class KaimingNormal(init.Initializer):
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'):
super(KaimingNormal, self).__init__()
self.a = a
self.mode = mode
self.nonlinearity = nonlinearity
def _initialize(self, arr):
tmp = kaiming_normal_(arr, self.a, self.mode, self.nonlinearity)
assignment(arr, tmp)
def default_recurisive_init(custom_cell):
"""weight init for conv2d and dense"""
for _, cell in custom_cell.cells_and_names():
if isinstance(cell, nn.Conv2d):
cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)),
cell.weight.default_input.shape(),
cell.weight.default_input.dtype())
if cell.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy())
bound = 1 / math.sqrt(fan_in)
cell.bias.default_input = Tensor(np.random.uniform(-bound, bound,
cell.bias.default_input.shape()),
cell.bias.default_input.dtype())
elif isinstance(cell, nn.Dense):
cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)),
cell.weight.default_input.shape(),
cell.weight.default_input.dtype())
if cell.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight.default_input.asnumpy())
bound = 1 / math.sqrt(fan_in)
cell.bias.default_input = Tensor(np.random.uniform(-bound, bound,
cell.bias.default_input.shape()),
cell.bias.default_input.dtype())
elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)):
pass
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册