提交 732b5fe8 编写于 作者: Z zhangz0911gm

Adding several operators Sigmoid, Squeeze, Unsqueeze, prelu and changing

folder location
上级 ea8b3c5d
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/base/prelu_base.h"
#include <vector>
#include "src/runtime/kernel/arm/int8/prelu_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_factory.h"
#include "include/errorcode.h"
#include "include/context.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Prelu;
namespace mindspore::kernel {
int PreluBaseCPUKernel::Init() {return RET_OK;}
kernel::LiteKernel *CpuPreluInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const Context *ctx,
const kernel::KernelKey &desc) {
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Input opParameter is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_Prelu);
auto *kernel = new(std::nothrow) PreluInt8CPUKernel(opParameter, inputs, outputs, ctx);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new PreluCPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Prelu, CpuPreluInt8KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_Prelu_BASE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_Prelu_BASE_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/nnacl/prelu_parameter.h"
#include "src/runtime/kernel/arm/base/layout_transform.h"
using mindspore::lite::Context;
namespace mindspore::kernel {
class PreluBaseCPUKernel : public LiteKernel {
public:
PreluBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->thread_num_) {
opParameter->thread_num_ = ctx->thread_num_;
prelu_param_ = reinterpret_cast<PreluParameter *>(opParameter);
}
~PreluBaseCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int Run() override { return 0; }
protected:
int thread_count_;
const Context *ctx_;
PreluParameter *prelu_param_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_Prelu_BASE_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/base/squeeze_base.h"
#include <vector>
#include "src/runtime/kernel/arm/int8/squeeze_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_factory.h"
#include "include/errorcode.h"
#include "include/context.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Squeeze;
namespace mindspore::kernel {
int SqueezeBaseCPUKernel::Init() { return RET_OK; }
kernel::LiteKernel *CpuSqueezeInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const Context *ctx,
const kernel::KernelKey &desc) {
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Input opParameter is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_Squeeze);
auto *kernel = new (std::nothrow) SqueezeInt8CPUKernel(opParameter, inputs, outputs, ctx);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new SqueezeCPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Squeeze, CpuSqueezeInt8KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/nnacl/squeeze_parameter.h"
#include "src/runtime/kernel/arm/base/layout_transform.h"
using mindspore::lite::Context;
namespace mindspore::kernel {
class SqueezeBaseCPUKernel : public LiteKernel {
public:
SqueezeBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->thread_num_) {
opParameter->thread_num_ = ctx->thread_num_;
}
virtual ~SqueezeBaseCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int Run() override { return 0; }
protected:
int thread_count_;
int *axis_;
const Context *ctx_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
......@@ -19,7 +19,6 @@
#include <vector>
#include "src/lite_kernel.h"
namespace mindspore::kernel {
class ZerosLikeCPUKernel : public LiteKernel {
public:
......
......@@ -17,6 +17,7 @@
#include "src/runtime/kernel/arm/fp32/activation.h"
#include "src/runtime/kernel/arm/int8/relu_int8.h"
#include "src/runtime/kernel/arm/int8/hswish_int8.h"
#include "src/runtime/kernel/arm/int8/sigmoid_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
......@@ -47,6 +48,9 @@ kernel::LiteKernel *CpuActivationInt8KernelCreator(const std::vector<lite::tenso
case schema::ActivationType_HSWISH:
kernel = new (std::nothrow) HswishInt8CPUKernel(parameter, inputs, outputs, ctx);
break;
case schema::ActivationType_SIGMOID:
kernel = new (std::nothrow) SigmoidInt8CPUKernel(parameter, inputs, outputs, ctx);
break;
default:
break;
}
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/prelu_int8.h"
#include <limits>
#include "src/runtime/kernel/arm/nnacl/int8/prelu_int8.h"
#include "src/runtime/runtime_api.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Prelu;
namespace mindspore::kernel {
int PreluInt8CPUKernel::Init() {
PreluBaseCPUKernel::Init();
auto *input_tensor = inputs_.at(kInputIndex);
auto in_quant_args = input_tensor->GetQuantParams();
quant_prelu_parm_->quant_arg.in_args_.scale_ = in_quant_args.front().scale;
quant_prelu_parm_->quant_arg.in_args_.zp_ = in_quant_args.front().zeroPoint;
auto input_dim = input_tensor->shape().size();
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
quant_prelu_parm_->input_dim_ = input_dim;
quant_prelu_parm_->element_num = inputs_[0]->Size();
auto *out_tensor = outputs_.at(kOutputIndex);
auto out_quant_args = out_tensor->GetQuantParams();
quant_prelu_parm_->quant_arg.out_args_.scale_ = out_quant_args.front().scale;
quant_prelu_parm_->quant_arg.out_args_.zp_ = out_quant_args.front().zeroPoint;
quant_prelu_parm_->in_shape_ = input_tensor->shape().data();
quant_prelu_parm_->out_shape_ = out_tensor->shape().data();
quant_prelu_parm_->quant_arg.output_activation_max_ = std::numeric_limits<int8_t>::max();
quant_prelu_parm_->quant_arg.output_activation_min_ = std::numeric_limits<int8_t>::min();
return RET_OK;
}
int PreluInt8CPUKernel::ReSize() { return 0; }
int PreluInt8CPUKernel::Run() {
auto ret = LiteBackendParallelLaunch(PreluInt8Run, this, thread_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "RunPreluParam failed. errorcode: ";
}
return RET_OK;
}
int PreluInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto prelu = reinterpret_cast<PreluInt8CPUKernel *>(cdata);
prelu->DoExecute(task_id);
return RET_OK;
}
int PreluInt8CPUKernel::DoExecute(int task_id) {
auto input_tensor = inputs_.at(kInputIndex);
auto out_tensor = outputs_.at(kOutputIndex);
int8_t *input_data = reinterpret_cast<int8_t *>(input_tensor->Data());
int8_t *output_data = reinterpret_cast<int8_t *>(out_tensor->Data());
prelu(input_data, output_data, quant_prelu_parm_, task_id);
return RET_OK;
}
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_PRELU_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_PRELU_INT8_H_
#include <vector>
#include "src/lite_kernel.h"
#include "include/context.h"
#include "src/runtime/kernel/arm/base/prelu_base.h"
#include "src/runtime/runtime_api.h"
using mindspore::lite::Context;
namespace mindspore::kernel {
class PreluInt8CPUKernel : public PreluBaseCPUKernel {
public:
PreluInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: PreluBaseCPUKernel(parameter, inputs, outputs, ctx) {
quant_prelu_parm_ = reinterpret_cast<PreluParameter *>(opParameter);
}
~PreluInt8CPUKernel() override {}
int Init() override;
int ReSize() override;
int Run() override;
int DoExecute(int task_id);
private:
PreluParameter *quant_prelu_parm_;
};
int PreluInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata);
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_PRELU_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/sigmoid_int8.h"
#include <limits>
#include "src/runtime/kernel/arm/nnacl/int8/sigmoid_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::ActivationType_SIGMOID;
namespace mindspore::kernel {
int SigmoidInt8CPUKernel::Init() {
lite::tensor::Tensor *input = inputs_.at(0);
lite::tensor::Tensor *output = outputs_.at(0);
MS_ASSERT(input);
MS_ASSERT(output);
quant_arg_.input_scale = input->GetQuantParams().front().scale;
quant_arg_.input_zp = input->GetQuantParams().front().zeroPoint;
quant_arg_.output_scale = output->GetQuantParams().front().scale;
quant_arg_.output_zp = output->GetQuantParams().front().zeroPoint;
const float output_multiplier = (1.0f / 128.0f) * quant_arg_.input_scale / quant_arg_.output_scale;
int32_t output_multiplier_fixedpoint;
QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint, &quant_arg_.output_multiplier_exponent);
MS_ASSERT(quant_arg_.output_multiplier_exponent <= 0);
MultiplierInt32ToInt16(output_multiplier_fixedpoint, &quant_arg_.output_multiplier_fixedpoint_int16);
const float relu6_multiplier = (1.0f / 128.0f) * quant_arg_.input_scale / (3.0f / 32768.0f);
int32_t relu6_multiplier_fixedpoint;
QuantizeMultiplier(relu6_multiplier, &relu6_multiplier_fixedpoint, &quant_arg_.relu6_multiplier_exponent);
MultiplierInt32ToInt16(relu6_multiplier_fixedpoint, &quant_arg_.relu6_multiplier_fixedpoint_int16);
return RET_OK;
}
void SigmoidInt8CPUKernel::MultiplierInt32ToInt16(int32_t input, int16_t *output) {
MS_ASSERT(input >= 0);
if (input >= std::numeric_limits<int32_t>::max() - (1 << 15)) {
*output = std::numeric_limits<int16_t>::max();
return;
}
*output = (input + (1 << 15)) >> 16;
}
int SigmoidInt8CPUKernel::ReSize() { return RET_OK; }
int SigmoidInt8CPUKernel::DoActivation(int task_id) {
auto input_addr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data());
auto output_addr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
auto length = inputs_.at(0)->ElementsNum();
int stride = UP_DIV(length, thread_count_);
int count = MSMIN(stride, length - stride * task_id);
SigmoidInt8(input_addr + stride * task_id, count, output_addr + stride * task_id, &quant_arg_);
return RET_OK;
}
int SigmoidInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto activation_kernel = reinterpret_cast<SigmoidInt8CPUKernel *>(cdata);
auto error_code = activation_kernel->DoActivation(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "SigmoidInt8Run error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
int SigmoidInt8CPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(SigmoidInt8Run, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "SigmoidInt8Run function error error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_SIGMOID_INT8_H_
#define MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_SIGMOID_INT8_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/nnacl/int8/sigmoid_int8.h"
namespace mindspore::kernel {
class SigmoidInt8CPUKernel : public LiteKernel {
public:
SigmoidInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx)
: LiteKernel(parameter, inputs, outputs), thread_count_(ctx->thread_num_) {}
~SigmoidInt8CPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoActivation(int task_id);
private:
int thread_count_;
SigmoidQuantArg quant_arg_;
void MultiplierInt32ToInt16(int32_t input, int16_t *output);
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_SIGMOID_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/nnacl/int8/squeeze_int8.h"
#include "src/runtime/kernel/arm/int8/squeeze_int8.h"
#include "src/runtime/kernel/arm/nnacl/squeeze_parameter.h"
#include "schema/model_generated.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
namespace mindspore::kernel {
int SqueezeInt8CPUKernel::Init() {
SqueezeBaseCPUKernel::Init();
quant_Squeeze_parm_ = new (std::nothrow) SqueezeQuantArg;
auto input_num = inputs_.size();
quant_Squeeze_parm_->input_num_ = input_num;
quant_Squeeze_parm_->input_sizes_ = reinterpret_cast<int *>(malloc(sizeof(int) * input_num));
if (quant_Squeeze_parm_->input_sizes_ == nullptr) {
MS_LOG(ERROR) << "Null pointer reference: quant_Squeeze_parm_->input_sizes_.";
return RET_ERROR;
}
for (size_t i = 0; i < input_num; i++) {
quant_Squeeze_parm_->input_sizes_[i] = 1;
}
quant_Squeeze_parm_->input_shapes_ = reinterpret_cast<int **>(malloc(sizeof(int *) * input_num));
if (quant_Squeeze_parm_->input_shapes_ == nullptr) {
MS_LOG(ERROR) << "Null pointer reference: quant_Squeeze_parm_->input_shapes_.";
return RET_ERROR;
}
for (size_t i = 0; i < input_num; i++) {
auto *input_tensor = inputs_.at(i);
MS_ASSERT(input_tensor != nullptr);
auto input_size = input_tensor->shape().size();
MS_ASSERT(input_size != NULL);
quant_Squeeze_parm_->input_shapes_[i] = reinterpret_cast<int *>(malloc(sizeof(int) * input_size));
if (quant_Squeeze_parm_->input_shapes_[i] == nullptr) {
MS_LOG(ERROR) << "Null pointer reference: quant_Squeeze_parm_->input_shapes_[" << i << "].";
return RET_ERROR;
}
::memcpy(quant_Squeeze_parm_->input_shapes_[i], input_tensor->shape().data(), sizeof(int) * input_size);
for (size_t j = 0; j < input_size; j++) {
auto *input_tensor_tmp = inputs_.at(i);
auto input_shape = input_tensor_tmp->shape()[j];
quant_Squeeze_parm_->input_sizes_[i] *= input_shape;
}
}
quant_Squeeze_parm_->axis_ = 0;
quant_Squeeze_parm_->in_quant_args_ = reinterpret_cast<QuantArg *>(malloc(sizeof(QuantArg) * input_num));
if (quant_Squeeze_parm_->in_quant_args_ == nullptr) {
MS_LOG(ERROR) << "Null pointer reference: quant_Squeeze_parm_->in_quant_args_.";
return RET_ERROR;
}
for (size_t i = 0; i < input_num; i++) {
auto *input_tensor = inputs_.at(i);
auto quant_args = input_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
quant_Squeeze_parm_->in_quant_args_[i].scale_ = quant_args.front().scale;
quant_Squeeze_parm_->in_quant_args_[i].zp_ = quant_args.front().zeroPoint;
}
MS_ASSERT(outputs_.size() == 1);
auto output_tensor = outputs_.at(0);
MS_ASSERT(output_tensor != nullptr);
auto output_shape = output_tensor->shape();
MS_ASSERT(output_shape != NULL);
auto output_dim = output_shape.size();
quant_Squeeze_parm_->output_dim_ = output_dim;
int output_size = 1;
for (size_t i = 0; i < output_dim; i++) {
output_size *= output_shape[i];
}
quant_Squeeze_parm_->output_size_ = output_size;
quant_Squeeze_parm_->output_shape_ = new int[output_size];
::memcpy(quant_Squeeze_parm_->output_shape_, output_shape.data(), sizeof(int) * output_size);
auto quant_args = output_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
quant_Squeeze_parm_->out_quant_args_.scale_ = quant_args.front().scale;
quant_Squeeze_parm_->out_quant_args_.zp_ = quant_args.front().zeroPoint;
return RET_OK;
}
int SqueezeInt8CPUKernel::ReSize() { return 0; }
int SqueezeInt8CPUKernel::Run() {
auto input_dim = quant_Squeeze_parm_->input_num_;
int8_t **inputs_array = reinterpret_cast<int8_t **>(malloc(sizeof(int8_t *) * input_dim));
for (size_t i = 0; i < input_dim; i++) {
auto input_size = quant_Squeeze_parm_->input_sizes_[i];
inputs_array[i] = reinterpret_cast<int8_t *>(malloc(sizeof(int8_t) * input_size));
auto input_type = inputs_[i]->data_type();
if (input_type == kNumberTypeUInt8) {
uint8_t *input_tmp = reinterpret_cast<uint8_t *>(inputs_[i]->Data());
for (size_t j = 0; j < input_size; j++) {
inputs_array[i][j] = (int8_t)(input_tmp[j] - 128);
}
for (size_t j = 0; j < input_dim; j++) {
quant_Squeeze_parm_->in_quant_args_[j].zp_ -= 128;
}
quant_Squeeze_parm_->out_quant_args_.zp_ -= 128;
} else {
::memcpy(inputs_array[i], inputs_.at(i)->Data(), sizeof(int8_t) * input_size);
}
}
int8_t *output_addr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
auto output_type = outputs_[0]->data_type();
if (output_type == kNumberTypeUInt8) {
auto output_size = quant_Squeeze_parm_->output_size_;
for (size_t i = 0; i < output_size; i++) {
output_addr[i] = (uint8_t)(output_addr[i] + 128);
}
}
for (int i = 0; i < input_dim; i++) {
free(*(inputs_array + i));
}
auto ret = LiteBackendParallelLaunch(SqueezeInt8Run, this, thread_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "RunSqueezeParam failed. errorcode: ";
}
return RET_OK;
}
int SqueezeInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto Squeeze = reinterpret_cast<SqueezeInt8CPUKernel *>(cdata);
Squeeze->DoExecute(task_id);
return RET_OK;
}
int SqueezeInt8CPUKernel::DoExecute(int task_id) {
auto input_tensor = inputs_.at(kInputIndex);
auto out_tensor = outputs_.at(kOutputIndex);
int8_t *input_data = reinterpret_cast<int8_t *>(input_tensor->Data());
int8_t *output_data = reinterpret_cast<int8_t *>(out_tensor->Data());
size_t data_size = inputs_.front()->Size();
Squeeze(&input_data, output_data, task_id, quant_Squeeze_parm_, para_, data_size);
return RET_OK;
}
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SQUEEZE_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SQUEEZE_INT8_H_
#include <vector>
#include "src/lite_kernel.h"
#include "include/context.h"
#include "src/runtime/runtime_api.h"
#include "src/runtime/kernel/arm/base/squeeze_base.h"
using mindspore::lite::Context;
namespace mindspore::kernel {
class SqueezeInt8CPUKernel : public SqueezeBaseCPUKernel {
public:
SqueezeInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: SqueezeBaseCPUKernel(parameter, inputs, outputs, ctx) {}
~SqueezeInt8CPUKernel() override { delete quant_Squeeze_parm_; }
int Init() override;
int ReSize() override;
int Run() override;
int DoExecute(int tId);
private:
SqueezeParameter *para_;
SqueezeQuantArg *quant_Squeeze_parm_;
};
int SqueezeInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata);
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SQUEEZE_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/nnacl/int8/unsqueeze_int8.h"
#include "src/runtime/kernel/arm/int8/unsqueeze_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Unsqueeze;
namespace mindspore::kernel {
int Unsqueezeint8CPUKernel::Init() {
auto *input_tensor = inputs_.at(0);
auto quant_args = input_tensor->GetQuantParams();
MS_ASSERT(quant_args.size() == 1);
Unsq_para_->quant_arg.in_quant_args_.scale_ = quant_args.front().scale;
Unsq_para_->quant_arg.in_quant_args_.zp_ = quant_args.front().zeroPoint;
auto out_quant_args = input_tensor->GetQuantParams();
Unsq_para_->quant_arg.out_quant_args_.scale_ = out_quant_args.front().scale;
Unsq_para_->quant_arg.out_quant_args_.zp_ = out_quant_args.front().zeroPoint;
Unsq_para_->thread_count_ = thread_count_;
int ret = ReSize();
return ret;
}
int Unsqueezeint8CPUKernel::ReSize() {
data_size_ = inputs_.at(0)->ElementsNum();
thread_sz_count_ = MSMIN(thread_count_, data_size_);
thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_);
return RET_OK;
}
int Unsqueezeint8CPUKernel::DoUnsqueeze(int task_id) {
size_t size = MSMIN(thread_sz_stride_, data_size_ - task_id * thread_sz_stride_);
if (size == 0) {
return RET_OK;
}
auto input_ptr = reinterpret_cast<int8_t *>(inputs_.front()->Data());
auto output_ptr = reinterpret_cast<int8_t *>(outputs_.front()->Data());
size_t data_size = outputs_.front()->Size();
int ret = Unsqueeze(input_ptr, output_ptr, Unsq_para_, data_size, task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "UnsqueezeRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int UnsqueezeIn8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto g_kernel = reinterpret_cast<Unsqueezeint8CPUKernel *>(cdata);
auto ret = g_kernel->DoUnsqueeze(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "UnsqueezeRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int Unsqueezeint8CPUKernel::Run() {
in_ptr_ = reinterpret_cast<float *>(inputs_.at(0)->Data());
out_ptr_ = reinterpret_cast<float *>(outputs_.at(0)->Data());
int ret = LiteBackendParallelLaunch(UnsqueezeIn8Run, this, thread_sz_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "UnsqueezeRun error error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
kernel::LiteKernel *CpuUnsqueezeInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Unsqueeze);
auto *kernel = new (std::nothrow) Unsqueezeint8CPUKernel(opParameter, inputs, outputs, ctx);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new UnsqueezeCPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Unsqueeze, CpuUnsqueezeInt8KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_UNSQUEEZE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_UNSQUEEZE_H_
#include <vector>
#include "src/lite_kernel.h"
#include "include/context.h"
#include "src/runtime/kernel/arm/nnacl/int8/unsqueeze_int8.h"
#include "src/runtime/kernel/arm/base/layout_transform.h"
using mindspore::lite::Context;
namespace mindspore::kernel {
class Unsqueezeint8CPUKernel : public LiteKernel {
public:
Unsqueezeint8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->thread_num_) {
Unsq_para_ = reinterpret_cast<UnSqueezeParameter *>(opParameter);
Unsq_para_->thread_count_ = opParameter->thread_num_;
}
~Unsqueezeint8CPUKernel() = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoUnsqueeze(int task_id);
private:
UnSqueezeQuantArg *quant_Unsqueeze_parm_;
UnSqueezeParameter *Unsq_para_;
int thread_count_;
int thread_sz_count_;
int thread_sz_stride_;
int data_size_;
float *in_ptr_;
float *out_ptr_;
const Context *ctx_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_UNSQUEEZE_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/nnacl/prelu_parameter.h"
#include "src/runtime/kernel/arm/nnacl/int8/prelu_int8.h"
void prelu(int8_t *inputs, int8_t *output_ptr, PreluParameter *quant_prelu_parm, int task_id) {
float output_scale = quant_prelu_parm->quant_arg.out_args_.scale_;
int output_zp = quant_prelu_parm->quant_arg.out_args_.zp_;
float output_inverse_scale = 1.f / output_scale;
int output_dim = quant_prelu_parm->input_dim_;
QuantArg *input_quant = new QuantArg;
for (int i = 0; i < output_dim; i++) {
input_quant[i].scale_ = quant_prelu_parm->quant_arg.in_args_.scale_;
input_quant[i].zp_ = quant_prelu_parm->quant_arg.in_args_.zp_;
}
for (int i = 0; i < output_dim; i++) {
float scale = input_quant[i].scale_ * output_inverse_scale;
float bias = -input_quant[i].zp_ * scale;
for (int j = task_id; j < quant_prelu_parm->element_num; j += quant_prelu_parm->op_parameter_.thread_num_) {
if (inputs[j] <= 0) {
int32_t output_tmp = round(inputs[j] * quant_prelu_parm->alpha_ * scale + bias) + output_zp;
if (output_tmp > 127) {
output_ptr[j] = 127;
} else if (output_tmp < -128) {
output_ptr[j] = -128;
} else {
output_ptr[j] = (int8_t)output_tmp;
}
} else {
int32_t output_tmp = round(inputs[j] * scale + bias) + output_zp;
if (output_tmp > 127) {
output_ptr[j] = 127;
} else if (output_tmp < -128) {
output_ptr[j] = -128;
} else {
output_ptr[j] = (int8_t)output_tmp;
}
}
}
}
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_PRELU_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_PRELU_INT8_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#include "src/runtime/kernel/arm/nnacl/prelu_parameter.h"
void prelu(int8_t *inputs, int8_t *output_ptr, PreluParameter *quant_Prelu_parm, int task_id);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_PRELU_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/nnacl/int8/sigmoid_int8.h"
int SigmoidInt8(const int8_t *src, int length, int8_t *dst, SigmoidQuantArg *arg) {
for (int i = 0; i < length; i++) {
const int16_t input_value = src[i] - arg->input_zp;
int16_t output;
output = round(1 / arg->output_scale * (1 / (1 + exp(-arg->input_scale * input_value))));
output += arg->output_zp;
output = MSMIN(output, 127);
output = MSMAX(output, -128);
dst[i] = (int8_t)output;
}
return 0;
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_Sigmoid_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_Sigmoid_INT8_H_
#include <math.h>
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#include "src/runtime/kernel/arm/nnacl/errorcode.h"
#include "src/runtime/kernel/arm/nnacl/quantization/fixed_point.h"
struct SigmoidQuantArg {
double input_scale;
int32_t input_zp;
double output_scale;
int32_t output_zp;
int16_t relu6_multiplier_fixedpoint_int16;
int32_t relu6_multiplier_exponent;
int16_t output_multiplier_fixedpoint_int16;
int32_t output_multiplier_exponent;
};
int SigmoidInt8(const int8_t *src, int length, int8_t *dst, SigmoidQuantArg *arg);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_Sigmoid_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/nnacl/squeeze_parameter.h"
#include "src/runtime/kernel/arm/nnacl/int8/squeeze_int8.h"
#include <string.h>
void Squeeze(int8_t **inputs, int8_t *output_ptr, int task_id, SqueezeQuantArg *quant_Squeeze_parm,
SqueezeParameter *para_, size_t osize) {
float output_scale = quant_Squeeze_parm->out_quant_args_.scale_;
float output_inverse_scale = 1.f / output_scale;
QuantArg *input_quant = quant_Squeeze_parm->in_quant_args_;
int output_zp = quant_Squeeze_parm->out_quant_args_.zp_;
int i = 0;
int8_t *input_ptr = inputs[0];
for (int j = task_id; j < osize; j += para_->op_parameter_.thread_num_) {
float scale = input_quant[i].scale_ * output_inverse_scale;
float bias = -input_quant[i].zp_ * scale;
int32_t output_tmp = round(input_ptr[j] * scale + bias) + output_zp;
if (output_tmp > 127) {
output_ptr[j] = 127;
} else if (output_tmp < -128) {
output_ptr[j] = -128;
} else {
output_ptr[j] = (int8_t)output_tmp;
}
}
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_SQUEEZE_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_SQUEEZE_INT8_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#include "src/runtime/kernel/arm/nnacl/int8/squeeze_int8.h"
#include "src/runtime/kernel/arm/int8/squeeze_int8.h"
void Squeeze(int8_t **inputs, int8_t *output_ptr, int task_id, SqueezeQuantArg *quant_Squeeze_parm,
SqueezeParameter *para_, size_t osize);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_SQUEEZE_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/nnacl/unsqueeze_parameter.h"
#include "src/runtime/kernel/arm/nnacl/int8/unsqueeze_int8.h"
#include <string.h>
#include "src/runtime/kernel/arm/nnacl/errorcode.h"
int Unsqueeze(int8_t *input_ptr, int8_t *output_ptr, UnSqueezeParameter *para_, size_t data_size, int task_id) {
float output_scale = para_->quant_arg.out_quant_args_.scale_;
int8_t output_zp = para_->quant_arg.out_quant_args_.zp_;
float input_scale = para_->quant_arg.in_quant_args_.scale_;
int8_t input_zp = para_->quant_arg.in_quant_args_.zp_;
for (int i = task_id; i < data_size; i += para_->thread_count_) {
output_ptr[i] = output_zp + round(1 / output_scale * input_scale * (input_ptr[i] - input_zp));
}
return 0;
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_UNSQUEEZE_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_UNSQUEEZE_INT8_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#include "src/runtime/kernel/arm/nnacl/unsqueeze_parameter.h"
int Unsqueeze(int8_t *input_ptr, int8_t *output_ptr, UnSqueezeParameter *para_, size_t data_size, int task_id);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_UNSQUEEZE_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRELU_PARAMETER_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRELU_PARAMETER_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#define PRELU_OFFSET_MAX_SIZE 4
struct PreluParameter {
OpParameter op_parameter_;
PreluQuantArg quant_arg;
double alpha_;
int thread_count_;
int64_t offset_[PRELU_OFFSET_MAX_SIZE];
int64_t in_offset_[PRELU_OFFSET_MAX_SIZE];
int64_t axis_;
const int *in_shape_;
const int *out_shape_;
int input_dim_;
int element_num;
};
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRELU_PARAMETER_H_
......@@ -40,16 +40,76 @@ struct ConvQuantArg {
};
struct ConcatQuantArg {
int *input_sizes_;
int output_size_;
int **input_shapes_;
int *output_shape_;
float alpha;
size_t input_num_;
size_t output_dim_;
QuantArg *in_quant_args_;
QuantArg out_quant_args_;
};
struct SqueezeQuantArg {
int *input_sizes_;
int output_size_;
int **input_shapes_;
int *output_shape_;
float alpha;
int axis_;
size_t input_num_;
size_t output_dim_;
QuantArg *in_quant_args_;
QuantArg out_quant_args_;
};
struct UnSqueezeQuantArg {
int *input_sizes_;
int output_size_;
int **input_shapes_;
int *output_shape_;
float alpha;
int axis_;
size_t input_num_;
size_t output_dim_;
QuantArg in_quant_args_;
QuantArg out_quant_args_;
};
struct PreluQuantArg {
int *input_sizes_;
int output_size_;
int **input_shapes_;
int *output_shape_;
size_t input_num_;
size_t output_dim_;
float alpha_;
QuantArg in_args_;
QuantArg out_args_;
int output_activation_min_;
int output_activation_max_;
QuantArg *in_quant_args_;
QuantArg out_quant_args_;
};
/*struct SigmoidQuantArg {
int *input_sizes_;
int output_size_;
int **input_shapes_;
int *output_shape_;
size_t input_num_;
size_t output_dim_;
float alpha_;
QuantArg in_args_;
QuantArg out_args_;
int output_activation_min_;
int output_activation_max_;
QuantArg *in_quant_args_;
QuantArg out_quant_args_;
};*/
struct MatmulQuantArg {
QuantArg input;
QuantArg weight;
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SIGMOID_PARAMETER_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SIGMOID_PARAMETER_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#define SIGMOID_OFFSET_MAX_SIZE 4
struct SigmoidParameter {
OpParameter op_parameter_;
SigmoidQuantArg quant_arg;
double alpha_;
int thread_count_;
int64_t offset_[PRELU_OFFSET_MAX_SIZE];
int64_t in_offset_[PRELU_OFFSET_MAX_SIZE];
int64_t axis_;
const int *in_shape_;
const int *out_shape_;
int input_dim_;
int element_num;
};
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SIGMOID_PARAMETER_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SQUEEZE_PARAMETER_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SQUEEZE_PARAMETER_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#define SQUEEZE_OFFSET_MAX_SIZE 4
struct SqueezeParameter {
OpParameter op_parameter_;
SqueezeQuantArg quant_arg;
int thread_count_;
int thread_id_;
int offset_size_;
int64_t offset_[SQUEEZE_OFFSET_MAX_SIZE];
int64_t in_offset_[SQUEEZE_OFFSET_MAX_SIZE];
int64_t axis_;
const int *in_shape_;
const int *out_shape_;
int input_dim_;
};
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SQUEEZE_PARAMETER_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_UNSQUEEZE_PARAMETER_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_UNSQUEEZE_PARAMETER_H_
#include "src/runtime/kernel/arm/nnacl/op_base.h"
#define UNSQUEEZE_OFFSET_MAX_SIZE 4
struct UnSqueezeParameter {
OpParameter op_parameter_;
UnSqueezeQuantArg quant_arg;
int thread_count_;
int thread_id_;
int offset_size_;
int64_t offset_[UNSQUEEZE_OFFSET_MAX_SIZE];
int64_t in_offset_[UNSQUEEZE_OFFSET_MAX_SIZE];
int64_t axis_;
const int *in_shape_;
const int *out_shape_;
int input_dim_;
};
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SQUEEZE_PARAMETER_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/prelu_parameter.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/src/lite_kernel.h"
#include "mindspore/lite/src/ir/tensor.h"
namespace mindspore {
class TestPreluInt8 : public mindspore::Common {
public:
TestPreluInt8() {}
};
TEST_F(TestPreluInt8, prelu_1) {
std::vector<int8_t> input1 = {1, -2, 3, 4, 5, 6, 7, -8};
std::vector<int> shape1 = {8};
std::vector<int8_t *> input(1, nullptr);
input[0] = input1.data();
const int output_size = 8;
int8_t output[8];
std::vector<int> output_shape = {8};
lite::tensor::QuantArg input_quant_arg;
input_quant_arg.scale = 1.0;
input_quant_arg.zeroPoint = 0;
lite::tensor::QuantArg output_quant_arg;
output_quant_arg.scale = 1.0;
output_quant_arg.zeroPoint = 0;
lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor;
TypeId tid_int8 = kNumberTypeInt8;
input_tensor1->SetData(input1.data());
input_tensor1->set_shape(shape1);
input_tensor1->AddQuantParam(input_quant_arg);
input_tensor1->set_data_type(tid_int8);
std::vector<lite::tensor::Tensor *> inputs_tensor(1);
inputs_tensor[0] = input_tensor1;
std::vector<lite::tensor::Tensor *> outputs_tensor(1);
lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor;
output0_tensor->SetData(output);
output0_tensor->set_shape(output_shape);
output0_tensor->AddQuantParam(output_quant_arg);
output0_tensor->set_data_type(tid_int8);
outputs_tensor[0] = output0_tensor;
PreluParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_Prelu;
op_param.alpha_ = 0.25;
lite::Context *ctx = new lite::Context;
ctx->thread_num_ = 2;
op_param.axis_ = 0.25;
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Prelu};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor->shape();
ASSERT_EQ(output_tensor_shape, output_shape);
kernel->Run();
std::vector<int8_t> except_result = {1, -1, 3, 4, 5, 6, 7, -2};
PrintData("output data", output, output_size);
PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size());
CompareOutputData(output, except_result.data(), output_size, 0.000001);
input_tensor1->SetData(nullptr);
output0_tensor->SetData(nullptr);
delete input_tensor1;
delete ctx;
}
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/activation.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/include/context.h"
namespace mindspore {
class TestSigmoidInt8 : public mindspore::Common {
public:
TestSigmoidInt8() {}
};
TEST_F(TestSigmoidInt8, Sigmoid) {
lite::tensor::Tensor in_tensor(kNumberTypeInt8, {4, 4});
lite::tensor::Tensor out_tensor(kNumberTypeInt8, {4, 4});
int8_t input_data[] = {0, 0, 0, 0, 1, 1, 1, 1}; // -3.5f, -3.0f, -2.5f, 0.f, 2.5f, 3.0f, 3.5f, 6.0f
int8_t output_data[8] = {0};
in_tensor.SetData(input_data);
out_tensor.SetData(output_data);
const lite::tensor::QuantArg quant_in = {1.0, 0}; // -4.0 -- 7.0
const lite::tensor::QuantArg quant_out = {1.0, 0}; // -3.0 -- 7.0
in_tensor.AddQuantParam(quant_in);
out_tensor.AddQuantParam(quant_out);
std::vector<lite::tensor::Tensor *> inputs = {&in_tensor};
std::vector<lite::tensor::Tensor *> outputs = {&out_tensor};
ActivationParameter parameter = {0};
parameter.op_parameter_.type_ = schema::PrimitiveType_Activation;
parameter.type_ = schema::ActivationType_SIGMOID;
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Activation};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
auto ctx = std::make_shared<lite::Context>();
auto kernel = creator(inputs, outputs, reinterpret_cast<OpParameter *>(&parameter), ctx.get(), desc);
ASSERT_NE(kernel, nullptr);
auto ret = kernel->Run();
EXPECT_EQ(0, ret);
int8_t expect[8] = {1, 1, 1, 1, 1, 1, 1, 1}; // 0, 0, -0.208333, 0, 2.29167, 3, 3.5, 6
for (int i = 0; i < 8; ++i) {
EXPECT_EQ(output_data[i], expect[i]);
}
in_tensor.SetData(nullptr);
out_tensor.SetData(nullptr);
}
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/squeeze_parameter.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/src/lite_kernel.h"
#include "mindspore/lite/src/ir/tensor.h"
namespace mindspore {
class TestSqueezeInt8 : public mindspore::Common {
public:
TestSqueezeInt8() {}
};
TEST_F(TestSqueezeInt8, Squeeze_1d_axis0_offset0_quant0_thread2) {
std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<int> shape1 = {8, 1};
std::vector<int8_t *> input(1, nullptr);
input[0] = input1.data();
const int output_size = 8;
int8_t output[8];
std::vector<int> output_shape = {8};
lite::tensor::QuantArg input_quant_arg;
input_quant_arg.scale = 1.0;
input_quant_arg.zeroPoint = 0;
lite::tensor::QuantArg output_quant_arg;
output_quant_arg.scale = 1.0;
output_quant_arg.zeroPoint = 0;
lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor;
TypeId tid_int8 = kNumberTypeInt8;
input_tensor1->SetData(input1.data());
input_tensor1->set_shape(shape1);
input_tensor1->AddQuantParam(input_quant_arg);
input_tensor1->set_data_type(tid_int8);
std::vector<lite::tensor::Tensor *> inputs_tensor(1);
inputs_tensor[0] = input_tensor1;
std::vector<lite::tensor::Tensor *> outputs_tensor(1);
lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor;
output0_tensor->SetData(output);
output0_tensor->set_shape(output_shape);
output0_tensor->AddQuantParam(output_quant_arg);
output0_tensor->set_data_type(tid_int8);
outputs_tensor[0] = output0_tensor;
SqueezeParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_Squeeze;
lite::Context *ctx = new lite::Context;
ctx->thread_num_ = 2;
op_param.axis_ = 0;
op_param.offset_[0] = 1;
op_param.offset_size_ = 1;
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Squeeze};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor->shape();
ASSERT_EQ(output_tensor_shape, output_shape);
kernel->Run();
std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8};
PrintData("output data", output, output_size);
PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size());
CompareOutputData(output, except_result.data(), output_size, 0.000001);
input_tensor1->SetData(nullptr);
output0_tensor->SetData(nullptr);
delete input_tensor1;
delete output0_tensor;
delete ctx;
}
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/unsqueeze_parameter.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/src/lite_kernel.h"
#include "mindspore/lite/src/ir/tensor.h"
namespace mindspore {
class TestUnsqueezeInt8 : public mindspore::Common {
public:
TestUnsqueezeInt8() {}
};
TEST_F(TestUnsqueezeInt8, Unsqueeze_1) {
std::vector<int8_t> input1 = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<int> shape1 = {8};
std::vector<int8_t *> input(1, nullptr);
input[0] = input1.data();
const int output_size = 8;
int8_t output[8];
std::vector<int> output_shape = {8, 1};
lite::tensor::QuantArg input_quant_arg;
input_quant_arg.scale = 1.0;
input_quant_arg.zeroPoint = 0;
lite::tensor::QuantArg output_quant_arg;
output_quant_arg.scale = 1.0;
output_quant_arg.zeroPoint = 0;
lite::tensor::Tensor *input_tensor1 = new lite::tensor::Tensor;
TypeId tid_int8 = kNumberTypeInt8;
input_tensor1->SetData(input1.data());
input_tensor1->set_shape(shape1);
input_tensor1->AddQuantParam(input_quant_arg);
input_tensor1->set_data_type(tid_int8);
std::vector<lite::tensor::Tensor *> inputs_tensor(1);
inputs_tensor[0] = input_tensor1;
std::vector<lite::tensor::Tensor *> outputs_tensor(1);
lite::tensor::Tensor *output0_tensor = new lite::tensor::Tensor;
output0_tensor->SetData(output);
output0_tensor->set_shape(output_shape);
output0_tensor->AddQuantParam(output_quant_arg);
output0_tensor->set_data_type(tid_int8);
outputs_tensor[0] = output0_tensor;
UnSqueezeParameter op_param;
op_param.op_parameter_.type_ = schema::PrimitiveType_Unsqueeze;
lite::Context *ctx = new lite::Context;
ctx->thread_num_ = 2;
op_param.axis_ = 0;
op_param.offset_[0] = 1;
op_param.offset_size_ = 1;
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Unsqueeze};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
kernel::LiteKernel *kernel =
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx, desc);
ASSERT_NE(kernel, nullptr);
auto output_tensor_shape = output0_tensor->shape();
ASSERT_EQ(output_tensor_shape, output_shape);
kernel->Run();
std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8};
PrintData("output data", output, output_size);
PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size());
CompareOutputData(output, except_result.data(), output_size, 0.000001);
input_tensor1->SetData(nullptr);
output0_tensor->SetData(nullptr);
delete input_tensor1;
delete output0_tensor;
delete ctx;
}
} // namespace mindspore
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册