Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
7307c81f
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7307c81f
编写于
4月 09, 2020
作者:
Y
YuJianfeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement AddN fission pass
上级
e8f6c1a4
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
361 addition
and
0 deletion
+361
-0
mindspore/ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
.../ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
+2
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/addn_fission.cc
...pore/ccsrc/pre_activate/ascend/ir_fission/addn_fission.cc
+81
-0
mindspore/ccsrc/pre_activate/ascend/ir_fission/addn_fission.h
...spore/ccsrc/pre_activate/ascend/ir_fission/addn_fission.h
+37
-0
mindspore/ccsrc/utils/utils.h
mindspore/ccsrc/utils/utils.h
+1
-0
tests/ut/cpp/pre_activate/ascend/ir_fission/addn_fission_test.cc
...t/cpp/pre_activate/ascend/ir_fission/addn_fission_test.cc
+160
-0
tests/ut/cpp/python_input/gtest_input/pre_activate/addn_fission_test.py
...ython_input/gtest_input/pre_activate/addn_fission_test.py
+80
-0
未找到文件。
mindspore/ccsrc/pre_activate/ascend/ascend_backend_optimization.cc
浏览文件 @
7307c81f
...
...
@@ -58,6 +58,7 @@
#include "pre_activate/ascend/ir_fission/add_memcpy_async.h"
#include "pre_activate/ascend/format_type/insert_cast_for_runop.h"
#include "pre_activate/ascend/format_type/insert_transdata_for_runop.h"
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#include "utils/context/ms_context.h"
#include "debug/anf_ir_dump.h"
#include "debug/anf_ir_utils.h"
...
...
@@ -175,6 +176,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
MulAddFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
MulAddNFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
MatmulBiasaddFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AddnFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
GetitemTuple
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TransposeTransDataFusion
>
());
}
...
...
mindspore/ccsrc/pre_activate/ascend/ir_fission/addn_fission.cc
0 → 100644
浏览文件 @
7307c81f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#include <memory>
#include <vector>
#include "session/anf_runtime_algorithm.h"
namespace
mindspore
{
namespace
opt
{
namespace
{
AnfNodePtr
CreateNewAddn
(
const
FuncGraphPtr
&
func_graph
,
const
CNodePtr
&
origin_addn_cnode
,
size_t
begin_index
,
size_t
offset
)
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
origin_addn_cnode
);
std
::
vector
<
AnfNodePtr
>
new_addn_inputs
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
prim
::
kPrimAddN
->
name
()))};
for
(
size_t
i
=
begin_index
;
i
<
begin_index
+
offset
;
++
i
)
{
new_addn_inputs
.
push_back
(
origin_addn_cnode
->
input
(
i
));
}
CNodePtr
new_addn
=
func_graph
->
NewCNode
(
new_addn_inputs
);
MS_EXCEPTION_IF_NULL
(
new_addn
);
new_addn
->
set_scope
(
origin_addn_cnode
->
scope
());
new_addn
->
set_abstract
(
origin_addn_cnode
->
abstract
());
AnfAlgo
::
SetNodeAttr
(
kAttrN
,
MakeValue
(
SizeToInt
(
offset
)),
new_addn
);
return
new_addn
;
}
}
// namespace
const
BaseRef
AddnFission
::
DefinePattern
()
const
{
VarPtr
Xs
=
std
::
make_shared
<
SeqVar
>
();
return
VectorRef
({
prim
::
kPrimAddN
,
Xs
});
}
const
AnfNodePtr
AddnFission
::
Process
(
const
FuncGraphPtr
&
func_graph
,
const
AnfNodePtr
&
node
,
const
EquivPtr
&
)
const
{
MS_EXCEPTION_IF_NULL
(
func_graph
);
MS_EXCEPTION_IF_NULL
(
node
);
auto
cnode
=
node
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
cnode
);
// The real input begins with index 1.
size_t
origin_input_size
=
cnode
->
inputs
().
size
()
-
1
;
if
(
origin_input_size
<=
inputs_divisor_
)
{
return
nullptr
;
}
CNodePtr
new_cnode
=
cnode
;
while
(
origin_input_size
>
inputs_divisor_
)
{
std
::
vector
<
AnfNodePtr
>
base_addn_inputs
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
prim
::
kPrimAddN
->
name
()))};
size_t
cur_input_index
=
1
;
// Divide the inputs of addn by 63.
while
(
origin_input_size
-
cur_input_index
+
1
>
inputs_divisor_
)
{
base_addn_inputs
.
push_back
(
CreateNewAddn
(
func_graph
,
new_cnode
,
cur_input_index
,
inputs_divisor_
));
cur_input_index
+=
inputs_divisor_
;
}
base_addn_inputs
.
push_back
(
CreateNewAddn
(
func_graph
,
new_cnode
,
cur_input_index
,
origin_input_size
-
cur_input_index
+
1
));
CNodePtr
base_addn
=
func_graph
->
NewCNode
(
base_addn_inputs
);
MS_EXCEPTION_IF_NULL
(
base_addn
);
MS_EXCEPTION_IF_NULL
(
new_cnode
);
base_addn
->
set_scope
(
new_cnode
->
scope
());
base_addn
->
set_abstract
(
new_cnode
->
abstract
());
AnfAlgo
::
SetNodeAttr
(
kAttrN
,
MakeValue
(
SizeToInt
(
base_addn_inputs
.
size
()
-
1
)),
base_addn
);
new_cnode
=
base_addn
;
origin_input_size
=
base_addn
->
inputs
().
size
()
-
1
;
}
return
new_cnode
;
}
}
// namespace opt
}
// namespace mindspore
mindspore/ccsrc/pre_activate/ascend/ir_fission/addn_fission.h
0 → 100644
浏览文件 @
7307c81f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace
mindspore
{
namespace
opt
{
constexpr
size_t
kAddnInputsDivisor
=
63
;
class
AddnFission
:
public
PatternProcessPass
{
public:
explicit
AddnFission
(
bool
multigraph
=
true
)
:
PatternProcessPass
(
"addn_fission"
,
multigraph
),
inputs_divisor_
(
kAddnInputsDivisor
)
{}
~
AddnFission
()
override
=
default
;
const
BaseRef
DefinePattern
()
const
override
;
const
AnfNodePtr
Process
(
const
FuncGraphPtr
&
,
const
AnfNodePtr
&
,
const
EquivPtr
&
)
const
override
;
private:
size_t
inputs_divisor_
;
};
}
// namespace opt
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
mindspore/ccsrc/utils/utils.h
浏览文件 @
7307c81f
...
...
@@ -142,6 +142,7 @@ constexpr auto kAttrDynInputSizes = "dyn_input_sizes";
constexpr
auto
kAttrSrcFormat
=
"src_format"
;
constexpr
auto
kAttrOutputUsedNum
=
"output_used_num"
;
constexpr
auto
kAttrHasBias
=
"has_bias"
;
constexpr
auto
kAttrN
=
"N"
;
// attr value
constexpr
auto
kValueTargetSwitch
=
"target_switch"
;
...
...
tests/ut/cpp/pre_activate/ascend/ir_fission/addn_fission_test.cc
0 → 100644
浏览文件 @
7307c81f
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#define private public
#define protected public
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
opt
{
class
TestHWAddnFission
:
public
BackendCommon
{
public:
TestHWAddnFission
()
:
get_py_fun_
(
"gtest_input.pre_activate.addn_fission_test"
,
true
)
{}
~
TestHWAddnFission
()
override
=
default
;
UT
::
PyFuncGraphFetcher
get_py_fun_
;
};
TEST_F
(
TestHWAddnFission
,
test_addn_fission_divided_by_2
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
2
,
32
,
224
,
224
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
addn_fission
=
std
::
make_shared
<
opt
::
AddnFission
>
();
addn_fission
->
inputs_divisor_
=
2
;
pm
->
AddPass
(
addn_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"after_divided_by_2"
);
EXPECT_NE
(
g_after
,
nullptr
);
auto
kg_after
=
GetKernelGraph
(
g_after
,
args_spec_list
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg_after
,
new_graph
));
}
TEST_F
(
TestHWAddnFission
,
test_addn_fission_divided_by_3
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
2
,
32
,
224
,
224
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
addn_fission
=
std
::
make_shared
<
opt
::
AddnFission
>
();
addn_fission
->
inputs_divisor_
=
3
;
pm
->
AddPass
(
addn_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"after_divided_by_3"
);
EXPECT_NE
(
g_after
,
nullptr
);
auto
kg_after
=
GetKernelGraph
(
g_after
,
args_spec_list
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg_after
,
new_graph
));
}
TEST_F
(
TestHWAddnFission
,
test_addn_fission_divided_by_4
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
2
,
32
,
224
,
224
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
addn_fission
=
std
::
make_shared
<
opt
::
AddnFission
>
();
addn_fission
->
inputs_divisor_
=
4
;
pm
->
AddPass
(
addn_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"after_divided_by_4"
);
EXPECT_NE
(
g_after
,
nullptr
);
auto
kg_after
=
GetKernelGraph
(
g_after
,
args_spec_list
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg_after
,
new_graph
));
}
TEST_F
(
TestHWAddnFission
,
test_addn_fission_divided_by_8
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
2
,
32
,
224
,
224
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
addn_fission
=
std
::
make_shared
<
opt
::
AddnFission
>
();
addn_fission
->
inputs_divisor_
=
8
;
pm
->
AddPass
(
addn_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"after_divided_by_8"
);
EXPECT_NE
(
g_after
,
nullptr
);
auto
kg_after
=
GetKernelGraph
(
g_after
,
args_spec_list
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg_after
,
new_graph
));
}
TEST_F
(
TestHWAddnFission
,
test_addn_fission_divided_by_9
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
2
,
32
,
224
,
224
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
for
(
size_t
i
=
0
;
i
<
9
;
++
i
)
{
args_spec_list
.
push_back
(
x_abstract
);
}
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
addn_fission
=
std
::
make_shared
<
opt
::
AddnFission
>
();
addn_fission
->
inputs_divisor_
=
9
;
pm
->
AddPass
(
addn_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_addn_fission"
,
"after_divided_by_9"
);
EXPECT_NE
(
g_after
,
nullptr
);
auto
kg_after
=
GetKernelGraph
(
g_after
,
args_spec_list
);
EXPECT_TRUE
(
CheckEqualGraph
(
kg_after
,
new_graph
));
}
}
// namespace opt
}
// namespace mindspore
tests/ut/cpp/python_input/gtest_input/pre_activate/addn_fission_test.py
0 → 100644
浏览文件 @
7307c81f
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
Primitive
addn
=
P
.
AddN
()
make_tuple
=
Primitive
(
'make_tuple'
)
class
FnDict
:
def
__init__
(
self
):
self
.
fnDict
=
{}
def
__call__
(
self
,
fn
):
self
.
fnDict
[
fn
.
__name__
]
=
fn
def
__getitem__
(
self
,
name
):
return
self
.
fnDict
[
name
]
def
test_addn_fission
(
tag
):
""" test_adam_apply_one_with_decay_rule """
fns
=
FnDict
()
@
fns
def
before
(
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
):
return
addn
((
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
))
@
fns
def
after_divided_by_2
(
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
):
a
=
addn
((
input0
,
input1
))
b
=
addn
((
input2
,
input3
))
c
=
addn
((
input4
,
input5
))
d
=
addn
((
input6
,
input7
))
e
=
addn
((
input8
,))
f
=
addn
((
a
,
b
))
g
=
addn
((
c
,
d
))
h
=
addn
((
e
,))
i
=
addn
((
f
,
g
))
j
=
addn
((
h
,))
return
addn
((
i
,
j
))
@
fns
def
after_divided_by_3
(
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
):
a
=
addn
((
input0
,
input1
,
input2
))
b
=
addn
((
input3
,
input4
,
input5
))
c
=
addn
((
input6
,
input7
,
input8
))
return
addn
((
a
,
b
,
c
))
@
fns
def
after_divided_by_4
(
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
):
a
=
addn
((
input0
,
input1
,
input2
,
input3
))
b
=
addn
((
input4
,
input5
,
input6
,
input7
))
c
=
addn
((
input8
,))
return
addn
((
a
,
b
,
c
))
@
fns
def
after_divided_by_8
(
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
):
a
=
addn
((
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
))
b
=
addn
((
input8
,))
return
addn
((
a
,
b
))
@
fns
def
after_divided_by_9
(
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
):
return
addn
((
input0
,
input1
,
input2
,
input3
,
input4
,
input5
,
input6
,
input7
,
input8
))
return
fns
[
tag
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录