提交 7307c81f 编写于 作者: Y YuJianfeng

implement AddN fission pass

上级 e8f6c1a4
......@@ -58,6 +58,7 @@
#include "pre_activate/ascend/ir_fission/add_memcpy_async.h"
#include "pre_activate/ascend/format_type/insert_cast_for_runop.h"
#include "pre_activate/ascend/format_type/insert_transdata_for_runop.h"
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#include "utils/context/ms_context.h"
#include "debug/anf_ir_dump.h"
#include "debug/anf_ir_utils.h"
......@@ -175,6 +176,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm->AddPass(std::make_shared<MulAddFusion>());
ir_fusion_pm->AddPass(std::make_shared<MulAddNFusion>());
ir_fusion_pm->AddPass(std::make_shared<MatmulBiasaddFusion>());
ir_fusion_pm->AddPass(std::make_shared<AddnFission>());
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>());
}
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#include <memory>
#include <vector>
#include "session/anf_runtime_algorithm.h"
namespace mindspore {
namespace opt {
namespace {
AnfNodePtr CreateNewAddn(const FuncGraphPtr &func_graph, const CNodePtr &origin_addn_cnode, size_t begin_index,
size_t offset) {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(origin_addn_cnode);
std::vector<AnfNodePtr> new_addn_inputs{NewValueNode(std::make_shared<Primitive>(prim::kPrimAddN->name()))};
for (size_t i = begin_index; i < begin_index + offset; ++i) {
new_addn_inputs.push_back(origin_addn_cnode->input(i));
}
CNodePtr new_addn = func_graph->NewCNode(new_addn_inputs);
MS_EXCEPTION_IF_NULL(new_addn);
new_addn->set_scope(origin_addn_cnode->scope());
new_addn->set_abstract(origin_addn_cnode->abstract());
AnfAlgo::SetNodeAttr(kAttrN, MakeValue(SizeToInt(offset)), new_addn);
return new_addn;
}
} // namespace
const BaseRef AddnFission::DefinePattern() const {
VarPtr Xs = std::make_shared<SeqVar>();
return VectorRef({prim::kPrimAddN, Xs});
}
const AnfNodePtr AddnFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(func_graph);
MS_EXCEPTION_IF_NULL(node);
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
// The real input begins with index 1.
size_t origin_input_size = cnode->inputs().size() - 1;
if (origin_input_size <= inputs_divisor_) {
return nullptr;
}
CNodePtr new_cnode = cnode;
while (origin_input_size > inputs_divisor_) {
std::vector<AnfNodePtr> base_addn_inputs{NewValueNode(std::make_shared<Primitive>(prim::kPrimAddN->name()))};
size_t cur_input_index = 1;
// Divide the inputs of addn by 63.
while (origin_input_size - cur_input_index + 1 > inputs_divisor_) {
base_addn_inputs.push_back(CreateNewAddn(func_graph, new_cnode, cur_input_index, inputs_divisor_));
cur_input_index += inputs_divisor_;
}
base_addn_inputs.push_back(
CreateNewAddn(func_graph, new_cnode, cur_input_index, origin_input_size - cur_input_index + 1));
CNodePtr base_addn = func_graph->NewCNode(base_addn_inputs);
MS_EXCEPTION_IF_NULL(base_addn);
MS_EXCEPTION_IF_NULL(new_cnode);
base_addn->set_scope(new_cnode->scope());
base_addn->set_abstract(new_cnode->abstract());
AnfAlgo::SetNodeAttr(kAttrN, MakeValue(SizeToInt(base_addn_inputs.size() - 1)), base_addn);
new_cnode = base_addn;
origin_input_size = base_addn->inputs().size() - 1;
}
return new_cnode;
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
#include "pre_activate/common/optimizer.h"
namespace mindspore {
namespace opt {
constexpr size_t kAddnInputsDivisor = 63;
class AddnFission : public PatternProcessPass {
public:
explicit AddnFission(bool multigraph = true)
: PatternProcessPass("addn_fission", multigraph), inputs_divisor_(kAddnInputsDivisor) {}
~AddnFission() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
private:
size_t inputs_divisor_;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
......@@ -142,6 +142,7 @@ constexpr auto kAttrDynInputSizes = "dyn_input_sizes";
constexpr auto kAttrSrcFormat = "src_format";
constexpr auto kAttrOutputUsedNum = "output_used_num";
constexpr auto kAttrHasBias = "has_bias";
constexpr auto kAttrN = "N";
// attr value
constexpr auto kValueTargetSwitch = "target_switch";
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#define private public
#define protected public
#include "pre_activate/ascend/ir_fission/addn_fission.h"
#undef private
#undef protected
namespace mindspore {
namespace opt {
class TestHWAddnFission : public BackendCommon {
public:
TestHWAddnFission() : get_py_fun_("gtest_input.pre_activate.addn_fission_test", true) {}
~TestHWAddnFission() override = default;
UT::PyFuncGraphFetcher get_py_fun_;
};
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_2) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 9; ++i) {
args_spec_list.push_back(x_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto addn_fission = std::make_shared<opt::AddnFission>();
addn_fission->inputs_divisor_ = 2;
pm->AddPass(addn_fission);
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_2");
EXPECT_NE(g_after, nullptr);
auto kg_after = GetKernelGraph(g_after, args_spec_list);
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
}
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_3) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 9; ++i) {
args_spec_list.push_back(x_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto addn_fission = std::make_shared<opt::AddnFission>();
addn_fission->inputs_divisor_ = 3;
pm->AddPass(addn_fission);
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_3");
EXPECT_NE(g_after, nullptr);
auto kg_after = GetKernelGraph(g_after, args_spec_list);
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
}
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_4) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 9; ++i) {
args_spec_list.push_back(x_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto addn_fission = std::make_shared<opt::AddnFission>();
addn_fission->inputs_divisor_ = 4;
pm->AddPass(addn_fission);
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_4");
EXPECT_NE(g_after, nullptr);
auto kg_after = GetKernelGraph(g_after, args_spec_list);
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
}
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_8) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 9; ++i) {
args_spec_list.push_back(x_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto addn_fission = std::make_shared<opt::AddnFission>();
addn_fission->inputs_divisor_ = 8;
pm->AddPass(addn_fission);
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_8");
EXPECT_NE(g_after, nullptr);
auto kg_after = GetKernelGraph(g_after, args_spec_list);
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
}
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_9) {
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
EXPECT_NE(g, nullptr);
std::vector<int> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 9; ++i) {
args_spec_list.push_back(x_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto addn_fission = std::make_shared<opt::AddnFission>();
addn_fission->inputs_divisor_ = 9;
pm->AddPass(addn_fission);
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_9");
EXPECT_NE(g_after, nullptr);
auto kg_after = GetKernelGraph(g_after, args_spec_list);
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
}
} // namespace opt
} // namespace mindspore
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import operations as P
from mindspore.ops import Primitive
addn = P.AddN()
make_tuple = Primitive('make_tuple')
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_addn_fission(tag):
""" test_adam_apply_one_with_decay_rule """
fns = FnDict()
@fns
def before(input0, input1, input2, input3, input4, input5, input6, input7, input8):
return addn((input0, input1, input2, input3, input4, input5, input6, input7, input8))
@fns
def after_divided_by_2(input0, input1, input2, input3, input4, input5, input6, input7, input8):
a = addn((input0, input1))
b = addn((input2, input3))
c = addn((input4, input5))
d = addn((input6, input7))
e = addn((input8,))
f = addn((a, b))
g = addn((c, d))
h = addn((e,))
i = addn((f, g))
j = addn((h,))
return addn((i, j))
@fns
def after_divided_by_3(input0, input1, input2, input3, input4, input5, input6, input7, input8):
a = addn((input0, input1, input2))
b = addn((input3, input4, input5))
c = addn((input6, input7, input8))
return addn((a, b, c))
@fns
def after_divided_by_4(input0, input1, input2, input3, input4, input5, input6, input7, input8):
a = addn((input0, input1, input2, input3))
b = addn((input4, input5, input6, input7))
c = addn((input8,))
return addn((a, b, c))
@fns
def after_divided_by_8(input0, input1, input2, input3, input4, input5, input6, input7, input8):
a = addn((input0, input1, input2, input3, input4, input5, input6, input7))
b = addn((input8,))
return addn((a, b))
@fns
def after_divided_by_9(input0, input1, input2, input3, input4, input5, input6, input7, input8):
return addn((input0, input1, input2, input3, input4, input5, input6, input7, input8))
return fns[tag]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册