Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
6c324b58
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c324b58
编写于
6月 19, 2020
作者:
C
changzherui
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify alexnet get_lr args
上级
46c8ef28
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
6 addition
and
8 deletion
+6
-8
model_zoo/alexnet/eval.py
model_zoo/alexnet/eval.py
+1
-1
model_zoo/alexnet/train.py
model_zoo/alexnet/train.py
+5
-7
未找到文件。
model_zoo/alexnet/eval.py
浏览文件 @
6c324b58
...
...
@@ -45,7 +45,7 @@ if __name__ == "__main__":
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
repeat_size
=
cfg
.
epoch_size
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
learning_rate
,
cfg
.
momentum
)
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
# test
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
print
(
"============== Starting Testing =============="
)
param_dict
=
load_checkpoint
(
args
.
ckpt_path
)
...
...
model_zoo/alexnet/train.py
浏览文件 @
6c324b58
...
...
@@ -43,19 +43,17 @@ if __name__ == "__main__":
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
args
.
device_target
)
ds_train
=
create_dataset_mnist
(
args
.
data_path
,
cfg
.
batch_size
,
cfg
.
epoch_size
)
network
=
AlexNet
(
cfg
.
num_classes
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
lr
=
Tensor
(
get_lr
(
0
,
cfg
.
learning_rate
,
cfg
.
epoch_size
,
cfg
.
save_checkpoint_steps
))
lr
=
Tensor
(
get_lr
(
0
,
cfg
.
learning_rate
,
cfg
.
epoch_size
,
ds_train
.
get_dataset_size
()
))
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
lr
,
cfg
.
momentum
)
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
# test
print
(
"============== Starting Training =============="
)
ds_train
=
create_dataset_mnist
(
args
.
data_path
,
cfg
.
batch_size
,
cfg
.
epoch_size
)
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
())
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_alexnet"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
print
(
"============== Starting Training =============="
)
model
.
train
(
cfg
.
epoch_size
,
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
LossMonitor
()],
dataset_sink_mode
=
args
.
dataset_sink_mode
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录