提交 6ae8345c 编写于 作者: R rick_sanchez

refactor vm module for multigraph sink

上级 1b5fb395
......@@ -800,45 +800,77 @@ void AscendSession::UpdateGraphOrder(GraphId to_graph_id) {
}
}
size_t AscendSession::SetChildGraphInput(const KernelGraphPtr &graph, const AnfNodePtr &node, size_t input_index) {
auto output_num = AnfAlgo::GetOutputTensorNum(node);
if (output_num > 1 && !AnfAlgo::CheckPrimitiveType(node, prim::kPrimTupleGetItem)) {
return input_index + output_num;
}
auto &graph_inputs = graph->inputs();
auto &valid_inputs = graph->ValidInputs();
if (valid_inputs[input_index]) {
SetChildGraphParameter(node, graph_inputs[input_index]);
} else {
MS_LOG(DEBUG) << "Invalid input arg: " << node->DebugString();
}
return ++input_index;
}
size_t AscendSession::SetChildGraphInput(const KernelGraphPtr &graph, const ValuePtr &value, size_t input_index) {
MS_EXCEPTION_IF_NULL(value);
if (!value->isa<Tensor>()) {
MS_LOG(EXCEPTION) << "Value Node should be a tensor, unexpected value: " << value->ToString();
}
auto &graph_inputs = graph->inputs();
SetChildGraphParameter(value->cast<TensorPtr>(), graph_inputs[input_index]);
return ++input_index;
}
size_t AscendSession::SetChildGraphInput(const KernelGraphPtr &graph, const VectorRef &vec_args, size_t input_index) {
auto index = input_index;
for (auto &arg : vec_args) {
if (utils::isa<AnfNodePtr>(arg)) {
// arg is a anf node
auto node = utils::cast<AnfNodePtr>(arg);
index = SetChildGraphInput(graph, node, input_index);
} else if (utils::isa<ValuePtr>(arg)) {
// arg is a tensor
auto value = utils::cast<ValuePtr>(arg);
index = SetChildGraphInput(graph, value, input_index);
} else {
MS_LOG(EXCEPTION) << "Unexpected arg type " << arg.ToString();
}
}
return index;
}
void AscendSession::SetChildGraphInput(GraphId g, const VectorRef &args) {
MS_LOG(INFO) << "Set input of graph " << g;
auto to_graph = GetGraph(g);
MS_EXCEPTION_IF_NULL(to_graph);
DumpGraphInputArgs(args);
UpdateGraphOrder(g);
std::vector<AnfNodePtr> graph_inputs = to_graph->inputs();
auto valid_inputs = to_graph->ValidInputs();
auto &graph_inputs = to_graph->inputs();
auto real_args = GetRealArgs(to_graph, args);
size_t input_index = 0;
for (size_t i = 0; i < real_args.size(); i++) {
if (input_index >= graph_inputs.size()) {
MS_LOG(EXCEPTION) << "input_index " << input_index << " out of range size " << graph_inputs.size();
}
if (utils::isa<AnfNodePtr>(real_args[i])) {
auto &real_arg = real_args[i];
if (utils::isa<AnfNodePtr>(real_arg)) {
// arg is a anf node
auto real_arg = utils::cast<AnfNodePtr>(real_args[i]);
auto real_arg_output_num = AnfAlgo::GetOutputTensorNum(real_arg);
if (!AnfAlgo::CheckPrimitiveType(real_arg, prim::kPrimTupleGetItem) && real_arg_output_num > 1) {
input_index += real_arg_output_num;
continue;
}
if (valid_inputs[input_index]) {
SetChildGraphParameter(real_arg, graph_inputs[input_index]);
} else {
MS_LOG(DEBUG) << "Invalid input arg" << real_arg->DebugString();
}
input_index++;
} else if (utils::isa<ValuePtr>(args[i])) {
auto value = utils::cast<ValuePtr>(args[i]);
MS_EXCEPTION_IF_NULL(value);
auto node = utils::cast<AnfNodePtr>(real_arg);
input_index = SetChildGraphInput(to_graph, node, input_index);
} else if (utils::isa<ValuePtr>(real_arg)) {
// arg is a tensor
if (!value->isa<Tensor>()) {
MS_LOG(EXCEPTION) << "Value Node should be a tensor, unexpected value: " << value->ToString();
}
SetChildGraphParameter(value->cast<TensorPtr>(), graph_inputs[input_index]);
input_index++;
auto value = utils::cast<ValuePtr>(real_arg);
input_index = SetChildGraphInput(to_graph, value, input_index);
} else if (utils::isa<VectorRef>(real_arg)) {
// arg is a VectorRef
auto vec_args = utils::cast<VectorRef>(real_arg);
input_index = SetChildGraphInput(to_graph, vec_args, input_index);
} else {
MS_LOG(EXCEPTION) << "Unexpected arg type " << args[i].ToString();
MS_LOG(EXCEPTION) << "Unexpected arg type " << real_arg.ToString();
}
}
MS_LOG(INFO) << "Finish!";
......
......@@ -79,6 +79,10 @@ class AscendSession : public SessionBasic {
void RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const;
void RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;
size_t SetChildGraphInput(const KernelGraphPtr &graph, const AnfNodePtr &node, size_t input_index);
size_t SetChildGraphInput(const KernelGraphPtr &graph, const ValuePtr &value, size_t input_index);
size_t SetChildGraphInput(const KernelGraphPtr &graph, const VectorRef &vec_args, size_t input_index);
// merge execution order list of child graphs
void MergeGraphExecOrder();
// insert assion op to sync data bettween different graphs
......
......@@ -88,7 +88,7 @@ class KernelGraph : public FuncGraph {
void set_executable(bool executable) { executable_ = executable; }
// set invalid inputs for control sink
std::vector<bool> *MutableValidInputs() { return &valid_inputs_; }
std::vector<bool> ValidInputs() { return valid_inputs_; }
const std::vector<bool> &ValidInputs() const { return valid_inputs_; }
private:
// remove value node form graph
......
......@@ -228,6 +228,8 @@ T cast(const BaseRef &handle) {
class VectorRef : public BaseRef {
public:
using value_type = BaseRef;
VectorRef() {}
explicit VectorRef(const std::vector<BaseRef> &elements) : elements_(elements) {}
VectorRef(const const_iterator &begin, const const_iterator &end) : elements_(begin, end) {}
......@@ -251,6 +253,13 @@ class VectorRef : public BaseRef {
return elements_[dim];
}
BaseRef &operator[](const std::size_t &dim) {
if (dim >= size()) {
MS_LOG(EXCEPTION) << "Out of the size of the tuple.";
}
return elements_[dim];
}
uint32_t type() const override { return tid(); }
std::string ToString() const override;
std::vector<BaseRef> &elements() { return elements_; }
......
......@@ -143,6 +143,66 @@ void MsBackend::SetSwitchGraph() {
}
}
// convert node from formal parameter to actual parameter,
// and actual parameter is graph user's formal parameter.
// get top while graph's parameter in recall while.
AnfNodePtr MsBackend::ConvertGraphInput(const FuncGraphPtr &func_graph, const AnfNodePtr &node) {
std::unordered_map<AnfNodePtr, size_t> params_index;
auto result = node;
auto graph = result->func_graph();
while (func_graph != graph) {
auto iter = graph_user_inputs_.find(graph);
if (iter == graph_user_inputs_.end()) {
break;
}
params_index.clear();
auto &params = graph->parameters();
for (size_t i = 0; i < params.size(); ++i) {
params_index[params[i]] = i;
}
graph = iter->second.first;
auto &inputs = iter->second.second;
result = inputs[params_index[result]];
}
return result;
}
void MsBackend::SetGraphUserInputs(const FuncGraphPtr &func_graph, const FuncGraphPtr &user,
const AnfNodePtrList &inputs) {
if (graph_user_inputs_.find(func_graph) != graph_user_inputs_.end()) {
return;
}
graph_user_inputs_[func_graph] = {user, inputs};
}
void MsBackend::RecallGraphInput(const FuncGraphPtr &func_graph, const VectorRef &args, const BaseRef &c) {
std::unordered_map<AnfNodePtr, size_t> params_index;
auto &params = func_graph->parameters();
for (size_t i = 0; i < params.size(); ++i) {
params_index[params[i]] = i;
}
// recall all child graphs in this while
auto &graph_inputs = graph_inputs_[c];
for (auto &iter : graph_inputs) {
auto &graph = iter.first;
auto &old_args = iter.second;
auto &result = graph_id_map_[graph];
auto &inputs = result.inputs;
for (size_t i = 0; i < inputs.size(); ++i) {
auto input = ConvertGraphInput(func_graph, inputs[i]);
auto it = params_index.find(input);
if (it != params_index.end()) {
old_args[i] = args[it->second];
}
}
sess_->SetChildGraphInput(graph, old_args);
}
graph_inputs_.erase(c);
}
// compile set input output
VectorRef MsBackend::MsSimuRunGraph(const GraphId &g, const VectorRef &args) {
MS_LOG(DEBUG) << "set graph input:" << g;
......@@ -150,13 +210,20 @@ VectorRef MsBackend::MsSimuRunGraph(const GraphId &g, const VectorRef &args) {
sess_->SetChildGraphInput(g, args);
if (is_switch_call_) {
bool curr_cond = simu_cond_map_[curr_switch_].curr_cond;
MS_LOG(DEBUG) << "switch call MsSimuRunGraph:" << curr_cond;
if (0 == simu_cond_map_[curr_switch_].cond_graph_map.count(curr_cond)) {
MS_LOG(DEBUG) << "switch call MsSimuRunGraph:" << curr_cond << ", " << g;
simu_cond_map_[curr_switch_].cond_graph_map[curr_cond] = g;
SetSwitchGraph();
if (!curr_switch_.is_null()) {
// push this {g, args} to all user while graph_inputs for nest while,
// when current condition recall over delete this cond in graph_inputs.
for (auto &iter : graph_inputs_) {
iter.second.push_back({g, args});
}
if (graph_inputs_.find(curr_switch_) == graph_inputs_.end()) {
graph_inputs_[curr_switch_].push_back({g, args});
}
}
bool curr_cond = simu_cond_map_[curr_switch_].curr_cond;
MS_LOG(DEBUG) << "switch call MsSimuRunGraph:" << curr_cond << ", " << g;
simu_cond_map_[curr_switch_].cond_graph_map[curr_cond] = g;
SetSwitchGraph();
}
std::vector<BaseRef> outputs;
......@@ -205,42 +272,17 @@ VectorRef MsBackend::MsRunGraph(const GraphId &g, const VectorRef &args) {
return outputs;
}
void MsBackend::SetSimuCondFlag(const BaseRef &c, int flag) {
MS_LOG(DEBUG) << "while set cond :" << c.ToString() << ", " << simu_cond_map_.size();
if (simu_cond_map_.find(c) == simu_cond_map_.end()) {
MS_LOG(EXCEPTION) << "error c not find";
}
simu_cond_map_[c].flag = flag;
}
int MsBackend::GetSimuCondFlag(const BaseRef &c) {
BaseRef cond = c;
if (cond.is_null()) {
MS_LOG(DEBUG) << "get curr_switch";
cond = curr_switch_;
}
if (simu_cond_map_.find(cond) == simu_cond_map_.end()) {
MS_LOG(ERROR) << "error c not find";
return -1;
}
return simu_cond_map_[cond].flag;
}
SwitchCondStatus MsBackend::SetSimuCond(const BaseRef &c, bool value) {
MS_LOG(DEBUG) << "set cond :" << c.ToString() << ", " << simu_cond_map_.size();
CondGraph cond_graph;
cond_graph.curr_cond = value;
if (simu_cond_map_.find(c) == simu_cond_map_.end()) {
cond_graph.flag = 0;
simu_cond_map_[c] = cond_graph;
}
if (simu_cond_map_[c].cond_graph_map.count(value)) {
if (value == true) {
return kCondAlreadyRun;
}
return kCondAlreadyRun;
}
simu_cond_map_[c].curr_cond = value;
MS_LOG(DEBUG) << "end set cond ";
......
......@@ -16,9 +16,11 @@
#ifndef MINDSPORE_CCSRC_VM_BACKEND_H_
#define MINDSPORE_CCSRC_VM_BACKEND_H_
#include <string>
#include <list>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "ir/anf.h"
#include "vm/segment_runner.h"
......@@ -45,6 +47,8 @@ class Backend {
virtual bool GetCond(const BaseRef &c, bool *value);
virtual void SetSwitchGraph() {}
virtual void SetSwitchActive(const BaseRef &, bool) {}
virtual void RecallGraphInput(const FuncGraphPtr &, const VectorRef &, const BaseRef &) {}
virtual void SetGraphUserInputs(const FuncGraphPtr &, const FuncGraphPtr &, const AnfNodePtrList &) {}
void set_curr_switch(const BaseRef &value) {
curr_switch_ = value;
......@@ -54,8 +58,6 @@ class Backend {
BaseRef curr_switch() { return curr_switch_; }
virtual void Link(GraphId) {}
virtual LinConvertResult GetMultiGraphRun(const FuncGraphPtr &) { return LinConvertResult(); }
virtual void SetSimuCondFlag(const BaseRef &, int) {}
virtual int GetSimuCondFlag(const BaseRef &) { return 0; }
LinConvertResult multi_result() { return multi_result_; }
void set_multi_result(const LinConvertResult &value) { multi_result_ = value; }
......@@ -75,11 +77,11 @@ class Backend {
bool simu_flag_;
LinConvertResult multi_result_;
AnfNodePtr final_output_;
std::unordered_map<FuncGraphPtr, std::pair<FuncGraphPtr, AnfNodePtrList>> graph_user_inputs_;
};
struct CondGraph {
bool curr_cond;
int flag;
std::unordered_map<bool, GraphId> cond_graph_map;
};
......@@ -97,15 +99,17 @@ class MsBackend : public Backend {
void SetSwitchGraph() override;
void SetSwitchActive(const BaseRef &c, bool cond) override;
void RecallGraphInput(const FuncGraphPtr &, const VectorRef &, const BaseRef &) override;
void SetGraphUserInputs(const FuncGraphPtr &, const FuncGraphPtr &, const AnfNodePtrList &) override;
void Link(GraphId) override;
AnfNodePtr ConvertGraphInput(const FuncGraphPtr &, const AnfNodePtr &);
LinConvertResult GetMultiGraphRun(const FuncGraphPtr &g) override;
void SetSimuCondFlag(const BaseRef &c, int flag) override;
int GetSimuCondFlag(const BaseRef &c) override;
private:
session::SessionPtr sess_;
std::unordered_map<BaseRef, CondGraph, BaseRefHash> simu_cond_map_;
std::unordered_map<GraphId, LinConvertResult> graph_id_map_;
std::unordered_map<BaseRef, std::list<std::pair<GraphId, VectorRef>>, BaseRefHash> graph_inputs_;
};
} // namespace compile
} // namespace mindspore
......
......@@ -390,6 +390,16 @@ void CompileGraph::AddTailCall(const AnfNodePtr &fn, size_t size) {
void CompileGraph::AddPartial(const CNodePtr &node) {
auto inputs = node->inputs();
VectorRef args;
auto fn = inputs[1];
if (!IsValueNode<FuncGraph>(fn)) {
MS_LOG(EXCEPTION) << "The type of 1st input of node must be FuncGraph";
}
if (backend_->is_multi_graph_sink()) {
auto func_graph = GetValueNode<FuncGraphPtr>(fn);
args.emplace_back(func_graph);
AnfNodePtrList outs(inputs.begin() + 2, inputs.end());
backend_->SetGraphUserInputs(func_graph, node->func_graph(), outs);
}
for (size_t i = 1; i < inputs.size(); i++) {
args.emplace_back(Ref(inputs[i]));
}
......@@ -442,12 +452,17 @@ void CompileGraph::AddPrimitive(const CNodePtr &node, const PrimitivePtr &prim)
}
int CompileGraph::AddCall(const FuncGraphPtr &graph, const CNodePtr &node) {
auto node_inputs = node->inputs();
AnfNodePtr fn = node_inputs[0];
auto inputs = node->inputs();
AnfNodePtr fn = inputs[0];
if (backend_->is_multi_graph_sink() && IsValueNode<FuncGraph>(fn)) {
auto func_graph = GetValueNode<FuncGraphPtr>(fn);
AnfNodePtrList outs(inputs.begin() + 1, inputs.end());
backend_->SetGraphUserInputs(func_graph, node->func_graph(), outs);
}
(void)Ref(fn);
size_t size = node_inputs.size();
size_t size = inputs.size();
for (size_t i = size - 1; i > 0; i--) {
AddInput(node_inputs[i]);
AddInput(inputs[i]);
}
if (node == graph->output()) {
AddTailCall(fn, size);
......
......@@ -32,7 +32,8 @@ namespace compile {
// Arguments:
// fn_: Callable function.
// args_: Sequence of function args.
StructPartial::StructPartial(int fn, const VectorRef &args) : fn_(fn), args_(args) {}
// fg_: Graph of function.
StructPartial::StructPartial(int fn, const VectorRef &args, const FuncGraphPtr &fg) : fn_(fn), args_(args), fg_(fg) {}
std::ostream &operator<<(std::ostream &os, const StructPartial &other) {
os << "partial(" << other.fn_ << ", " << other.args_.ToString() << ")";
......@@ -40,7 +41,7 @@ std::ostream &operator<<(std::ostream &os, const StructPartial &other) {
}
bool operator==(const StructPartial &lhs, const StructPartial &rhs) {
return (lhs.fn_ == rhs.fn_ && lhs.args_ == rhs.args_);
return (lhs.fn_ == rhs.fn_ && lhs.args_ == rhs.args_ && lhs.fg_ == rhs.fg_);
}
StructSimuSwitch::StructSimuSwitch(const BaseRef &fn, const BaseRef &value) : fn_(fn), value_(value) {}
......@@ -242,16 +243,6 @@ void FinalVM::InstTailCall(const VectorRef &args) {
int nargs = utils::cast<int>(args[2]);
auto new_jmp = Ref(jmp);
if (backend_->simu_flag()) {
if (backend_->GetSimuCondFlag(BaseRef()) == 2) {
MS_LOG(DEBUG) << "invoke while call tail first";
Pop(height);
Push(1);
Popp();
return;
}
}
MoveStack(nargs, height);
MS_LOG(DEBUG) << "TailCall pushp:" << pc_ << ", jmp:" << jmp;
DoJmp(new_jmp);
......@@ -291,8 +282,30 @@ void FinalVM::InstReturn(const VectorRef &args) {
MS_LOG(DEBUG) << "End";
}
void FinalVM::InstPartial(const VectorRef &args) {
MS_LOG(DEBUG) << "Start";
void FinalVM::InstSimuPartial(const VectorRef &args) {
const size_t args_size = 2;
if (args.size() < args_size) {
MS_LOG(ERROR) << __FUNCTION__ << " requires " << args_size << " or more parameters, while the input size is "
<< args.size() << ".";
return;
}
auto &node = args[0];
if (!utils::isa<FuncGraphPtr>(node)) {
MS_LOG(ERROR) << "The type of 1st input of node must be FuncGraph";
return;
}
auto fg = utils::cast<FuncGraphPtr>(node);
int fn_ = utils::cast<int>(args[1]);
auto fn = utils::cast<int>(Ref(fn_));
MS_LOG(DEBUG) << "Partial argssize:" << args.size();
std::vector<BaseRef> outs(args.size() - 2);
(void)std::transform(args.begin() + 2, args.end(), outs.begin(),
[&, this](const BaseRef &a) { return Ref(utils::cast<int>(a)); });
Push(std::make_shared<StructPartial>(fn, VectorRef(outs), fg));
}
void FinalVM::InstRealPartial(const VectorRef &args) {
const size_t args_size = 1;
if (args.size() < args_size) {
MS_LOG(ERROR) << __FUNCTION__ << " requires " << args_size << " or more parameters, while the input size is "
......@@ -304,10 +317,18 @@ void FinalVM::InstPartial(const VectorRef &args) {
auto fn = utils::cast<int>(Ref(fn_));
MS_LOG(DEBUG) << "Partial argssize:" << args.size();
std::vector<BaseRef> outs(args.size() - 1);
(void)std::transform(args.begin() + 1, args.end(), outs.begin(),
[&, this](const BaseRef &a) { return Ref(utils::cast<int>(a)); });
Push(std::make_shared<StructPartial>(fn, VectorRef(outs)));
}
void FinalVM::InstPartial(const VectorRef &args) {
MS_LOG(DEBUG) << "Start";
if (backend_->is_multi_graph_sink()) {
InstSimuPartial(args);
} else {
InstRealPartial(args);
}
MS_LOG(DEBUG) << "End";
}
......@@ -328,43 +349,57 @@ void FinalVM::InstSimuSwitch(const VectorRef &args) {
bool bool_value = cond;
SwitchCondStatus cond_stat = backend_->SetSimuCond(c, bool_value);
int cond_flag = backend_->GetSimuCondFlag(c);
MS_LOG(DEBUG) << "Simu switch cond:" << cond << ", " << cond_flag << ", " << c.cast<AnfNodePtr>()->DebugString();
if (cond_flag == 2) {
Popp();
Popp();
backend_->SetSimuCondFlag(c, 0);
return;
}
if (cond_stat == kCondAlreadyRun) {
MS_LOG(DEBUG) << "switch alreay run bool while true jmp";
if (cond_flag == 0) {
MS_LOG(DEBUG) << "switch second run bool while true jmp";
backend_->SetSwitchActive(c, true);
Push(std::make_shared<StructSimuSwitch>(Ref(vtrue), c));
Pushsp();
backend_->SetSimuCondFlag(c, 1);
return;
} else if (cond_flag == 1) {
MS_LOG(DEBUG) << "switch first run bool while if jmp";
Push(std::make_shared<StructSimuSwitch>(Ref(vfalse), c));
(void)backend_->SetSimuCond(c, false);
backend_->SetSimuCondFlag(c, 2);
return;
} else {
MS_LOG(EXCEPTION) << "error cond not find";
return;
BaseRef jmp = Ref(vtrue);
if (utils::isa<StructPartial>(jmp)) {
auto new_jmp = utils::cast<std::shared_ptr<StructPartial>>(jmp);
backend_->RecallGraphInput(new_jmp->fg_, new_jmp->args_, c);
}
cond_jmp_[c] = Ref(vfalse);
Push(static_cast<int>(cond_stat));
Popp();
backend_->SetSwitchActive(c, bool_value);
return;
}
if (bool_value) {
Push(std::make_shared<StructSimuSwitch>(Ref(vtrue), c));
Pushsp();
} else {
MergeJmpArgs(Ref(vfalse), c);
Push(std::make_shared<StructSimuSwitch>(Ref(vfalse), c));
}
}
void FinalVM::MergeJmpArgs(const BaseRef &jmp, const BaseRef &c) {
auto iter = cond_jmp_.find(c);
if (iter == cond_jmp_.end()) {
return;
}
auto old_jmp = utils::cast<std::shared_ptr<StructPartial>>(iter->second);
auto new_jmp = utils::cast<std::shared_ptr<StructPartial>>(jmp);
auto &old_args = old_jmp->args_;
auto &new_args = new_jmp->args_;
for (size_t i = 0; i < new_args.size(); ++i) {
auto &old_arg = old_args[i];
auto &new_arg = new_args[i];
if (utils::isa<VectorRef>(old_arg)) {
auto old_vec_ref = utils::cast<VectorRef>(old_arg);
if (utils::isa<VectorRef>(new_arg)) {
auto new_vec_ref = utils::cast<VectorRef>(new_arg);
std::copy(new_vec_ref.begin(), new_vec_ref.end(), std::back_inserter(old_vec_ref));
}
new_arg = old_vec_ref;
} else if (utils::isa<VectorRef>(new_arg)) {
auto new_vec_ref = utils::cast<VectorRef>(new_arg);
new_vec_ref.push_back(old_arg);
new_arg = new_vec_ref;
} else {
new_arg = VectorRef({new_arg, old_arg});
}
}
}
void FinalVM::InstRealSwitch(const VectorRef &args) {
const size_t args_size = 3;
if (args.size() != args_size) {
......@@ -399,6 +434,7 @@ void FinalVM::InstSwitch(const VectorRef &args) {
} else {
InstRealSwitch(args);
}
MS_LOG(DEBUG) << "End";
}
void FinalVM::InstTuple(const VectorRef &args) {
......
......@@ -27,6 +27,9 @@
#include <utility>
#include <vector>
#include <deque>
#include <unordered_map>
#include "ir/anf.h"
#include "utils/base_ref.h"
namespace mindspore {
......@@ -60,13 +63,14 @@ const std::vector<std::string> inst_str{"call", "tail_call", "return", "partial
class StructPartial : public Base {
public:
// Initialize StructPartial.
StructPartial(int fn, const VectorRef &args);
StructPartial(int fn, const VectorRef &args, const FuncGraphPtr &fg = nullptr);
virtual ~StructPartial() = default;
MS_DECLARE_PARENT(StructPartial, Base)
int fn_;
VectorRef args_;
FuncGraphPtr fg_;
};
std::ostream &operator<<(std::ostream &os, const StructPartial &other);
......@@ -98,6 +102,8 @@ class FinalVM {
void InstTailCall(const VectorRef &args);
void InstReturn(const VectorRef &args);
void InstPartial(const VectorRef &args);
void InstSimuPartial(const VectorRef &args);
void InstRealPartial(const VectorRef &args);
void InstSwitch(const VectorRef &args);
void InstSimuSwitch(const VectorRef &args);
void InstRealSwitch(const VectorRef &args);
......@@ -120,6 +126,7 @@ class FinalVM {
void Pushsp();
void Popsp();
void DoJmp(const BaseRef &jmp);
void MergeJmpArgs(const BaseRef &jmp, const BaseRef &c);
private:
InstSet insts_;
......@@ -128,6 +135,7 @@ class FinalVM {
std::stack<int> retsp_;
int pc_;
int sp_;
std::unordered_map<BaseRef, BaseRef, BaseRefHash> cond_jmp_;
BackendPtr backend_;
const InstFunctionMap inst_function_map = {
{Instruction::kCall, [this](const VectorRef &args) { InstCall(args); }},
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_multigraph_sink """
import pytest
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.common import dtype as mstype
from mindspore.common import ms_function
from mindspore.ops import operations as P
def setup_module(module):
context.set_context(mode = context.PYNATIVE_MODE, save_graphs = True, device_target = "Ascend")
context.set_context(enable_task_sink = True, device_id = 0)
c1 = Tensor([2], mstype.int32)
c2 = Tensor([14], mstype.int32)
c3 = Tensor([1], mstype.int32)
c4 = Tensor([0], mstype.int32)
c5 = Tensor([14], mstype.int32)
@ms_function
def simple_if(x, y, z):
if x < y:
x = x + 1
else:
x = x + 2
x = x + 3
return x
@ms_function
def if_by_if(x, y, z):
if x < y:
x = x + 1
if y > x:
x = x + 2
x = x + 3
return x
@ms_function
def if_in_if(x, y, z):
out = c4
if x < y:
z = c4 + c4
if z < y:
z = z + 2
out = out + z
x = x + 3
out = out + x
return out
@ms_function
def simple_while(x, y, z):
y = y + 4
while x < y:
x = x + 1
x = x + 3
return x
@ms_function
def while_by_while(x, y, z):
while x < y:
x = x + 1
while z < c5:
z = z + 1
x = x + 1
x = x + 1
return x
@ms_function
def while_in_while(x, y, z):
out = c4
while x < y:
z = c4 + c4
while z < y:
z = z + 1
out = out + z
x = x + 1
out = out + x
return out
@ms_function
def while_by_while_in_while(x, y, z):
out = c4
while x < c2:
y = c4 + c4
while y < c2:
y = y + 1
out = out + y
z = c4 + c4
while z < c2:
z = z + 1
out = out + z
x = x + 1
out = out + x
return out
@ms_function
def while_in_while_in_while(x, y, z):
out = c4
while x < c2:
y = c4 + c4
while y < c2:
y = y + 1
z = c4 + c4
while z < c2:
z = z + 1
out = out + z
out = out + y
x = x + 1
out = out + x
return out
def test_simple_if():
output = simple_if(c1, c2, c3)
expect = Tensor([6], mstype.int32)
assert output == expect
def test_if_by_if():
output = if_by_if(c1, c2, c3)
expect = Tensor([8], mstype.int32)
assert output == expect
def test_if_in_if():
output = if_in_if(c1, c2, c3)
expect = Tensor([7], mstype.int32)
assert output == expect
def test_simple_while():
output = simple_while(c1, c2, c3)
expect = Tensor([21], mstype.int32)
assert output == expect
def test_while_by_while():
output = while_by_while(c1, c2, c3)
expect = Tensor([28], mstype.int32)
assert output == expect
def test_while_in_while():
output = while_in_while(c1, c2, c3)
expect = Tensor([1274], mstype.int32)
assert output == expect
def test_while_by_while_in_while():
output = while_by_while_in_while(c1, c2, c3)
expect = Tensor([350], mstype.int32)
assert output == expect
def test_while_in_while_in_while():
output = while_in_while_in_while(c1, c2, c3)
expect = Tensor([2534], mstype.int32)
assert output == expect
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_multigraph_sink """
import pytest
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.common import dtype as mstype
from mindspore.common import ms_function
from mindspore.ops import operations as P
def setup_module(module):
context.set_context(mode = context.PYNATIVE_MODE, save_graphs = True, device_target = "Ascend")
context.set_context(enable_task_sink = True, device_id = 0)
c1 = Tensor([2], mstype.int32)
c2 = Tensor([14], mstype.int32)
c3 = Tensor([1], mstype.int32)
c4 = Tensor([0], mstype.int32)
c5 = Tensor([14], mstype.int32)
@ms_function
def simple_if(x, y, z):
if x < y:
x = x + 1
else:
x = x + 2
x = x + 3
return x
@ms_function
def if_by_if(x, y, z):
if x < y:
x = x + 1
if y > x:
x = x + 2
x = x + 3
return x
@ms_function
def if_in_if(x, y, z):
out = c4
if x < y:
z = c4 + c4
if z < y:
z = z + 2
out = out + z
x = x + 3
out = out + x
return out
@ms_function
def simple_while(x, y, z):
y = y + 4
while x < y:
x = x + 1
x = x + 3
return x
@ms_function
def while_by_while(x, y, z):
while x < y:
x = x + 1
while z < c5:
z = z + 1
x = x + 1
x = x + 1
return x
def test_simple_if():
output = simple_if(c1, c2, c3)
expect = Tensor([6], mstype.int32)
assert output == expect
def test_if_by_if():
output = if_by_if(c1, c2, c3)
expect = Tensor([8], mstype.int32)
assert output == expect
def test_if_in_if():
output = if_in_if(c1, c2, c3)
expect = Tensor([7], mstype.int32)
assert output == expect
def test_simple_while():
output = simple_while(c1, c2, c3)
expect = Tensor([21], mstype.int32)
assert output == expect
def test_while_by_while():
output = while_by_while(c1, c2, c3)
expect = Tensor([28], mstype.int32)
assert output == expect
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册