Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
6a8cd83d
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6a8cd83d
编写于
5月 13, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 13, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1114 fix some python code format
Merge pull request !1114 from casgj/gaojing
上级
793bfddb
abb4b7ed
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
10 addition
and
10 deletion
+10
-10
mindspore/nn/layer/basic.py
mindspore/nn/layer/basic.py
+6
-6
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+4
-4
未找到文件。
mindspore/nn/layer/basic.py
浏览文件 @
6a8cd83d
...
...
@@ -398,22 +398,22 @@ class Pad(Cell):
paddings are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates how many sizes to
be extended behind of the `D` th dimension of the input tensor.
mode (str
ing
): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
mode (str): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
Default: "CONSTANT".
Inputs:
- **
input_x** (Tensor) - The input tensor.
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, the tensor after padding.
- If `mode` is "CONSTANT", it fill the edge with 0, regardless of the values of the `input_x`.
- If `mode` is "CONSTANT", it fill
s
the edge with 0, regardless of the values of the `input_x`.
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
Outputs is [[0,0,0,0,0,0,0],[0,0,1,2,3,0,0],[0,0,4,5,6,0,0],[0,0,7,8,9,0,0],[0,0,0,0,0,0,0]].
- If
'mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in,
symmetry.
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
- If
`mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in.
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
Outputs is [[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]].
- If
'mode'
is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
- If
`mode`
is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
6a8cd83d
...
...
@@ -2320,7 +2320,7 @@ class MirrorPad(PrimitiveWithInfer):
Pads the input tensor according to the paddings and mode.
Args:
mode (str
ing
): Specifies padding mode. The optional values are "REFLECT", "SYMMETRIC".
mode (str): Specifies padding mode. The optional values are "REFLECT", "SYMMETRIC".
Default: "REFLECT".
Inputs:
...
...
@@ -2334,10 +2334,10 @@ class MirrorPad(PrimitiveWithInfer):
Outputs:
Tensor, the tensor after padding.
- If
'mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in,
symmetry.
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
- If
`mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in.
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
Outputs is [[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]].
- If
'mode'
is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
- If
`mode`
is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录