Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
69edd8e2
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
69edd8e2
编写于
5月 18, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 18, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1166 add dynamic learning rate
Merge pull request !1166 from wukesong/add-dy-lr
上级
4efa9717
157329ef
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
59 addition
and
11 deletion
+59
-11
example/alexnet_cifar10/generator_lr.py
example/alexnet_cifar10/generator_lr.py
+44
-0
example/alexnet_cifar10/train.py
example/alexnet_cifar10/train.py
+8
-5
example/lenet_mnist/train.py
example/lenet_mnist/train.py
+7
-6
未找到文件。
example/alexnet_cifar10/generator_lr.py
0 → 100755
浏览文件 @
69edd8e2
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""learning rate generator"""
import
numpy
as
np
def
get_lr
(
current_step
,
lr_max
,
total_epochs
,
steps_per_epoch
):
"""
generate learning rate array
Args:
current_step(int): current steps of the training
lr_max(float): max learning rate
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step
=
[]
total_steps
=
steps_per_epoch
*
total_epochs
decay_epoch_index
=
[
0.8
*
total_steps
]
for
i
in
range
(
total_steps
):
if
i
<
decay_epoch_index
[
0
]:
lr
=
lr_max
else
:
lr
=
lr_max
*
0.1
lr_each_step
.
append
(
lr
)
lr_each_step
=
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
learning_rate
=
lr_each_step
[
current_step
:]
return
learning_rate
example/alexnet_cifar10/train.py
浏览文件 @
69edd8e2
...
...
@@ -21,12 +21,14 @@ python train.py --data_path /YourDataPath
import
argparse
from
config
import
alexnet_cfg
as
cfg
from
dataset
import
create_dataset
from
generator_lr
import
get_lr
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore
import
Tensor
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.model_zoo.alexnet
import
AlexNet
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
if
__name__
==
"__main__"
:
...
...
@@ -43,16 +45,17 @@ if __name__ == "__main__":
network
=
AlexNet
(
cfg
.
num_classes
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
learning_rate
,
cfg
.
momentum
)
lr
=
Tensor
(
get_lr
(
0
,
cfg
.
learning_rate
,
cfg
.
epoch_size
,
cfg
.
save_checkpoint_steps
))
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
lr
,
cfg
.
momentum
)
model
=
Model
(
network
,
loss
,
opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
# test
print
(
"============== Starting Training =============="
)
ds_train
=
create_dataset
(
args
.
data_path
,
cfg
.
batch_size
,
cfg
.
epoch_size
,
"train"
)
cfg
.
epoch_size
)
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
()
)
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_alexnet"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
model
.
train
(
cfg
.
epoch_size
,
ds_train
,
callbacks
=
[
ckpoint_cb
,
LossMonitor
()],
model
.
train
(
cfg
.
epoch_size
,
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
LossMonitor
()],
dataset_sink_mode
=
args
.
dataset_sink_mode
)
example/lenet_mnist/train.py
浏览文件 @
69edd8e2
...
...
@@ -25,7 +25,7 @@ from dataset import create_dataset
import
mindspore.nn
as
nn
from
mindspore.model_zoo.lenet
import
LeNet5
from
mindspore
import
context
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
...
...
@@ -40,19 +40,20 @@ if __name__ == "__main__":
args
=
parser
.
parse_args
()
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
args
.
device_target
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
args
.
device_target
,
enable_mem_reuse
=
False
)
ds_train
=
create_dataset
(
os
.
path
.
join
(
args
.
data_path
,
"train"
),
cfg
.
batch_size
,
cfg
.
epoch_size
)
network
=
LeNet5
(
cfg
.
num_classes
)
net_loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
net_opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
lr
,
cfg
.
momentum
)
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
())
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_lenet"
,
config
=
config_ck
)
model
=
Model
(
network
,
net_loss
,
net_opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
ds_train
=
create_dataset
(
os
.
path
.
join
(
args
.
data_path
,
"train"
),
cfg
.
batch_size
,
cfg
.
epoch_size
)
print
(
"============== Starting Training =============="
)
model
.
train
(
cfg
[
'epoch_size'
],
ds_train
,
callbacks
=
[
ckpoint_cb
,
LossMonitor
()],
model
.
train
(
cfg
[
'epoch_size'
],
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
LossMonitor
()],
dataset_sink_mode
=
args
.
dataset_sink_mode
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录