提交 67a0cc3b 编写于 作者: W wilfChen

gpu queue support unary

上级 afe04847
......@@ -60,6 +60,34 @@ __global__ void SquareKernel(T *input, T *output, size_t count) {
return;
}
template <typename T>
__global__ void SqrtKernel(T *input, T *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = sqrt(input[i]);
}
return;
}
template <>
__global__ void SqrtKernel(half *input, half *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = hsqrt(input[i]);
}
return;
}
template <typename T>
__global__ void RsqrtKernel(T *input, T *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = rsqrt(input[i]);
}
return;
}
template <>
__global__ void RsqrtKernel(half *input, half *output, size_t count) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
output[i] = hrsqrt(input[i]);
}
return;
}
template <typename T>
__global__ void ZeroslikeKernel(T *output, size_t count) {
T zero = 0.0;
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
......@@ -93,6 +121,21 @@ void Square(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
return;
}
template <typename T>
void Pow(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
PowKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
return;
}
template <typename T>
void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
SqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
return;
}
template <typename T>
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream) {
RsqrtKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, output, count);
return;
}
template <typename T>
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream) {
ZeroslikeKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(output, count);
return;
......@@ -103,10 +146,14 @@ template void Logarithm<float>(float *input, float *output, size_t count, cudaSt
template void Negative<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Reciprocal<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Square<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Sqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Rsqrt<float>(float *input, float *output, size_t count, cudaStream_t cuda_stream);
template void Zeroslike<float>(float *output, size_t count, cudaStream_t cuda_stream);
template void Exponential<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Logarithm<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Negative<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Reciprocal<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Square<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Sqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Rsqrt<half>(half *input, half *output, size_t count, cudaStream_t cuda_stream);
template void Zeroslike<half>(half *output, size_t count, cudaStream_t cuda_stream);
......@@ -29,6 +29,10 @@ void Reciprocal(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Square(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Sqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Rsqrt(T *input, T *output, size_t count, cudaStream_t cuda_stream);
template <typename T>
void Zeroslike(T *output, size_t count, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOPIMPL_H_
......@@ -42,5 +42,9 @@ MS_REG_GPU_KERNEL_ONE(Square, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddO
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Square, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
UnaryOpGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(Sqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryOpGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(Rsqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
UnaryOpGpuKernel, float)
} // namespace kernel
} // namespace mindspore
......@@ -34,6 +34,8 @@ enum UnaryOptype {
UNARY_OP_RECIPROCAL,
UNARY_OP_ZEROSLIKE,
UNARY_OP_SQUARE,
UNARY_OP_SQRT,
UNARY_OP_RSQRT,
UNARY_OP_INVALID_TYPE = 255
};
static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY_OP_EXP},
......@@ -41,7 +43,9 @@ static const std::map<std::string, UnaryOptype> kUnaryOpTypeMap = {{"Exp", UNARY
{"Neg", UNARY_OP_NEG},
{"Reciprocal", UNARY_OP_RECIPROCAL},
{"ZerosLike", UNARY_OP_ZEROSLIKE},
{"Square", UNARY_OP_SQUARE}};
{"Square", UNARY_OP_SQUARE},
{"Sqrt", UNARY_OP_SQRT},
{"Rsqrt", UNARY_OP_RSQRT}};
template <typename T>
class UnaryOpGpuKernel : public GpuKernel {
public:
......@@ -80,6 +84,14 @@ class UnaryOpGpuKernel : public GpuKernel {
Square(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_SQRT: {
Sqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_RSQRT: {
Rsqrt(input_addr, output_addr, inputs[0]->size / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
break;
}
case UNARY_OP_ZEROSLIKE: {
Zeroslike(output_addr, output_size_ / sizeof(T), reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sqrt():
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
output_ms = P.Sqrt()(Tensor(x_np))
output_np = np.sqrt(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Rsqrt()(Tensor(x_np))
output_np = 1 / np.sqrt(x_np)
assert np.allclose(output_ms.asnumpy(), output_np)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册