提交 6775190e 编写于 作者: K kswang

add cpu one hot

上级 7214c041
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/cpu/kernel/one_hot_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace mindspore {
namespace device {
namespace cpu {
void OneHotCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
if (output_shape.size() < 2) {
MS_LOG(EXCEPTION) << "invalid output shape size: " << output_shape.size();
}
int axis = AnfAlgo::GetNodeAttr<int>(kernel_node, AXIS);
if (axis != -1 && IntToSize(axis) >= output_shape.size()) {
MS_LOG(EXCEPTION) << "invalid axis: " << axis;
}
if (axis == -1) {
axis_ = output_shape.size() - 1;
} else {
axis_ = IntToSize(axis);
}
depth_ = output_shape[axis_];
stride_ = 1;
for (size_t i = axis_ + 1; i < output_shape.size(); ++i) {
stride_ *= output_shape[i];
}
}
bool OneHotCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (inputs.size() < 3 || outputs.empty()) {
MS_LOG(EXCEPTION) << "input or output invalid!";
}
auto indices = reinterpret_cast<int *>(inputs[0]->addr);
auto on_value = reinterpret_cast<float *>(inputs[1]->addr)[0];
auto off_value = reinterpret_cast<float *>(inputs[2]->addr)[0];
auto output = reinterpret_cast<float *>(outputs[0]->addr);
size_t elem_num = inputs[0]->size / sizeof(int);
for (size_t i = 0; i < elem_num; i++) {
size_t stride_num = i / stride_;
size_t output_index = stride_num * depth_ * stride_ + i % stride_;
size_t index = IntToSize(indices[i]);
for (size_t j = 0; j < depth_; j++) {
if (index == j) {
output[output_index] = on_value;
} else {
output[output_index] = off_value;
}
output_index += stride_;
}
}
return true;
}
} // namespace cpu
} // namespace device
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_DEVICE_CPU_ONE_HOT_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_DEVICE_CPU_ONE_HOT_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "device/cpu/cpu_kernel.h"
#include "device/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace device {
namespace cpu {
class OneHotCPUKernel : public CPUKernel {
public:
OneHotCPUKernel() = default;
~OneHotCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
size_t depth_;
size_t stride_;
size_t axis_;
};
MS_REG_CPU_KERNEL(OneHot, OneHotCPUKernel);
} // namespace cpu
} // namespace device
} // namespace mindspore
#endif // MINDSPORE_CCSRC_DEVICE_CPU_ONE_HOT_CPU_KERNEL_H_
......@@ -35,6 +35,8 @@ class ReshapeCPUKernel : public CPUKernel {
};
MS_REG_CPU_KERNEL(Reshape, ReshapeCPUKernel);
MS_REG_CPU_KERNEL(Flatten, ReshapeCPUKernel);
MS_REG_CPU_KERNEL(ExpandDims, ReshapeCPUKernel);
} // namespace cpu
} // namespace device
} // namespace mindspore
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context
context.set_context(device_target='CPU')
class NetOneHot(nn.Cell):
def __init__(self):
super(NetOneHot, self).__init__()
self.on_value = 2.0
self.off_value = 3.0
self.depth_1 = 6
self.one_hot_1 = nn.OneHot(-1, self.depth_1, self.on_value, self.off_value)
self.depth_2 = 4
self.one_hot_2 = nn.OneHot(0, self.depth_1, self.on_value, self.off_value)
self.one_hot_3 = nn.OneHot(0, self.depth_2, self.on_value, self.off_value)
self.one_hot_4 = nn.OneHot(1, self.depth_1, self.on_value, self.off_value)
@ms_function
def construct(self, indices1, indices2, indices3, indices4):
return (self.one_hot_1(indices1), self.one_hot_2(indices2),
self.one_hot_3(indices3), self.one_hot_4(indices4))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_one_hot():
one_hot = NetOneHot()
indices1 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(np.int32))
indices2 = Tensor(np.array([1, 2, 3]).astype(np.int32))
indices3 = Tensor(np.array([[0, 1], [1, 0]]).astype(np.int32))
indices4 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(np.int32))
output = one_hot(indices1, indices2, indices3, indices4)
expect_0 = np.array([
[[2., 3., 3., 3., 3., 3.], [3., 2., 3., 3., 3., 3.]],
[[3., 3., 3., 3., 2., 3.], [3., 3., 3., 3., 3., 2.]],
[[3., 3., 2., 3., 3., 3.], [3., 3., 3., 3., 3., 3.]]
]).astype(np.float32)
expect_1 = np.array([
[3., 3., 3.],
[2., 3., 3.],
[3., 2., 3.],
[3., 3., 2.],
[3., 3., 3.],
[3., 3., 3.]
]).astype(np.float32)
expect_2 = np.array([
[[2., 3.], [3., 2.]], [[3., 2.], [2., 3.]], [[3., 3.], [3., 3.]],
[[3., 3.], [3., 3.]]
]).astype(np.float32)
expect_3 = np.array([
[[2., 3.], [3., 2.], [3., 3.], [3., 3.], [3., 3.], [3., 3.]],
[[3., 3.], [3., 3.], [3., 3.], [3., 3.], [2., 3.], [3., 2.]],
[[3., 3.], [3., 3.], [2., 3.], [3., 3.], [3., 3.], [3., 3.]]
]).astype(np.float32)
assert (output[0].asnumpy() == expect_0).all()
assert (output[1].asnumpy() == expect_1).all()
assert (output[2].asnumpy() == expect_2).all()
assert (output[3].asnumpy() == expect_3).all()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册