Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
66bbdb4a
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
66bbdb4a
编写于
6月 09, 2020
作者:
B
buxue
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change tensor dtype and shape from function to attr
上级
553432c9
变更
64
隐藏空白更改
内联
并排
Showing
64 changed file
with
348 addition
and
342 deletion
+348
-342
example/resnet50_imagenet2012/train.py
example/resnet50_imagenet2012/train.py
+4
-4
example/resnet50_imagenet2012_THOR/model/thor_layer.py
example/resnet50_imagenet2012_THOR/model/thor_layer.py
+3
-3
example/yolov3_coco2017/train.py
example/yolov3_coco2017/train.py
+1
-1
mindspore/ccsrc/ir/tensor.cc
mindspore/ccsrc/ir/tensor.cc
+24
-24
mindspore/common/dtype.py
mindspore/common/dtype.py
+2
-2
mindspore/common/initializer.py
mindspore/common/initializer.py
+2
-2
mindspore/common/parameter.py
mindspore/common/parameter.py
+2
-2
mindspore/common/tensor.py
mindspore/common/tensor.py
+5
-5
mindspore/model_zoo/mobilenetV2.py
mindspore/model_zoo/mobilenetV2.py
+6
-6
mindspore/model_zoo/mobilenetV3.py
mindspore/model_zoo/mobilenetV3.py
+6
-6
mindspore/nn/layer/basic.py
mindspore/nn/layer/basic.py
+4
-4
mindspore/nn/layer/combined.py
mindspore/nn/layer/combined.py
+1
-1
mindspore/nn/layer/conv.py
mindspore/nn/layer/conv.py
+1
-1
mindspore/nn/layer/embedding.py
mindspore/nn/layer/embedding.py
+1
-1
mindspore/nn/layer/normalization.py
mindspore/nn/layer/normalization.py
+1
-1
mindspore/nn/layer/pooling.py
mindspore/nn/layer/pooling.py
+3
-3
mindspore/nn/layer/quant.py
mindspore/nn/layer/quant.py
+3
-3
mindspore/ops/composite/multitype_ops/greater_impl.py
mindspore/ops/composite/multitype_ops/greater_impl.py
+1
-1
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+12
-12
mindspore/ops/operations/math_ops.py
mindspore/ops/operations/math_ops.py
+2
-2
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+4
-4
mindspore/train/_utils.py
mindspore/train/_utils.py
+2
-2
mindspore/train/serialization.py
mindspore/train/serialization.py
+15
-15
model_zoo/bert/src/fused_layer_norm.py
model_zoo/bert/src/fused_layer_norm.py
+1
-1
model_zoo/mobilenetv2/src/mobilenetV2.py
model_zoo/mobilenetv2/src/mobilenetV2.py
+6
-6
model_zoo/mobilenetv3/src/mobilenetV3.py
model_zoo/mobilenetv3/src/mobilenetV3.py
+6
-6
model_zoo/resnet101/train.py
model_zoo/resnet101/train.py
+4
-4
model_zoo/ssd/src/init_params.py
model_zoo/ssd/src/init_params.py
+2
-2
tests/st/gnn/aggregator.py
tests/st/gnn/aggregator.py
+3
-3
tests/st/nccl/test_nccl_all_gather_op.py
tests/st/nccl/test_nccl_all_gather_op.py
+1
-1
tests/st/nccl/test_nccl_all_reduce_op.py
tests/st/nccl/test_nccl_all_reduce_op.py
+6
-6
tests/st/nccl/test_nccl_reduce_scatter_op.py
tests/st/nccl/test_nccl_reduce_scatter_op.py
+3
-3
tests/st/networks/models/bert/src/fused_layer_norm.py
tests/st/networks/models/bert/src/fused_layer_norm.py
+1
-1
tests/st/ops/ascend/test_autocast.py
tests/st/ops/ascend/test_autocast.py
+41
-41
tests/st/ops/ascend/test_tbe_ops/test_bias_add.py
tests/st/ops/ascend/test_tbe_ops/test_bias_add.py
+1
-1
tests/st/ops/ascend/test_tdt_data_ms.py
tests/st/ops/ascend/test_tdt_data_ms.py
+1
-1
tests/st/ops/cpu/test_argmax_op.py
tests/st/ops/cpu/test_argmax_op.py
+1
-1
tests/st/ops/cpu/test_equalcount_op.py
tests/st/ops/cpu/test_equalcount_op.py
+2
-2
tests/st/ops/cpu/test_softmax_op.py
tests/st/ops/cpu/test_softmax_op.py
+1
-1
tests/st/ops/cpu/test_softmax_with_cross_entropy_op.py
tests/st/ops/cpu/test_softmax_with_cross_entropy_op.py
+2
-2
tests/st/ops/gpu/test_correction_mul_op.py
tests/st/ops/gpu/test_correction_mul_op.py
+1
-1
tests/st/ops/gpu/test_equal_op.py
tests/st/ops/gpu/test_equal_op.py
+8
-8
tests/st/ops/gpu/test_exp_op.py
tests/st/ops/gpu/test_exp_op.py
+4
-4
tests/st/ops/gpu/test_log_op.py
tests/st/ops/gpu/test_log_op.py
+4
-4
tests/st/ops/gpu/test_mul_op.py
tests/st/ops/gpu/test_mul_op.py
+10
-10
tests/st/ops/gpu/test_neg_op.py
tests/st/ops/gpu/test_neg_op.py
+4
-4
tests/st/ops/gpu/test_realdiv_op.py
tests/st/ops/gpu/test_realdiv_op.py
+10
-10
tests/st/ops/gpu/test_reciprocal_op.py
tests/st/ops/gpu/test_reciprocal_op.py
+4
-4
tests/st/ops/gpu/test_reduce_max_op.py
tests/st/ops/gpu/test_reduce_max_op.py
+7
-7
tests/st/ops/gpu/test_reduce_mean_op.py
tests/st/ops/gpu/test_reduce_mean_op.py
+15
-15
tests/st/ops/gpu/test_reduce_sum_op.py
tests/st/ops/gpu/test_reduce_sum_op.py
+15
-15
tests/st/ops/gpu/test_sub_op.py
tests/st/ops/gpu/test_sub_op.py
+10
-10
tests/st/ops/gpu/test_tile_op.py
tests/st/ops/gpu/test_tile_op.py
+3
-3
tests/st/ops/gpu/test_zeroslike_op.py
tests/st/ops/gpu/test_zeroslike_op.py
+4
-4
tests/ut/python/dtype/test_list.py
tests/ut/python/dtype/test_list.py
+7
-1
tests/ut/python/exec/test_bias_add.py
tests/ut/python/exec/test_bias_add.py
+1
-1
tests/ut/python/exec/test_train.py
tests/ut/python/exec/test_train.py
+1
-1
tests/ut/python/ir/test_tensor.py
tests/ut/python/ir/test_tensor.py
+44
-44
tests/ut/python/ir/test_tensor_py.py
tests/ut/python/ir/test_tensor_py.py
+2
-2
tests/ut/python/pipeline/infer/infer.py
tests/ut/python/pipeline/infer/infer.py
+1
-1
tests/ut/python/pynative_mode/nn/test_layernorm.py
tests/ut/python/pynative_mode/nn/test_layernorm.py
+2
-2
tests/ut/python/utils/test_initializer.py
tests/ut/python/utils/test_initializer.py
+1
-1
tests/ut/python/utils/test_serialize.py
tests/ut/python/utils/test_serialize.py
+2
-2
tests/vm_impl/array_ops_vm_impl.py
tests/vm_impl/array_ops_vm_impl.py
+1
-1
未找到文件。
example/resnet50_imagenet2012/train.py
浏览文件 @
66bbdb4a
...
@@ -79,12 +79,12 @@ if __name__ == '__main__':
...
@@ -79,12 +79,12 @@ if __name__ == '__main__':
for
_
,
cell
in
net
.
cells_and_names
():
for
_
,
cell
in
net
.
cells_and_names
():
if
isinstance
(
cell
,
nn
.
Conv2d
):
if
isinstance
(
cell
,
nn
.
Conv2d
):
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
XavierUniform
(),
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
XavierUniform
(),
cell
.
weight
.
default_input
.
shape
()
,
cell
.
weight
.
default_input
.
shape
,
cell
.
weight
.
default_input
.
dtype
()
).
to_tensor
()
cell
.
weight
.
default_input
.
dtype
).
to_tensor
()
if
isinstance
(
cell
,
nn
.
Dense
):
if
isinstance
(
cell
,
nn
.
Dense
):
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
TruncatedNormal
(),
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
TruncatedNormal
(),
cell
.
weight
.
default_input
.
shape
()
,
cell
.
weight
.
default_input
.
shape
,
cell
.
weight
.
default_input
.
dtype
()
).
to_tensor
()
cell
.
weight
.
default_input
.
dtype
).
to_tensor
()
if
not
config
.
use_label_smooth
:
if
not
config
.
use_label_smooth
:
config
.
label_smooth_factor
=
0.0
config
.
label_smooth_factor
=
0.0
...
...
example/resnet50_imagenet2012_THOR/model/thor_layer.py
浏览文件 @
66bbdb4a
...
@@ -338,15 +338,15 @@ class Dense_Thor(Cell):
...
@@ -338,15 +338,15 @@ class Dense_Thor(Cell):
self
.
has_bias
=
check_bool
(
has_bias
)
self
.
has_bias
=
check_bool
(
has_bias
)
self
.
thor
=
True
self
.
thor
=
True
if
isinstance
(
weight_init
,
Tensor
):
if
isinstance
(
weight_init
,
Tensor
):
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
()
[
0
]
!=
out_channels
or
\
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
[
0
]
!=
out_channels
or
\
weight_init
.
shape
()
[
1
]
!=
in_channels
:
weight_init
.
shape
[
1
]
!=
in_channels
:
raise
ValueError
(
"weight_init shape error"
)
raise
ValueError
(
"weight_init shape error"
)
self
.
weight
=
Parameter
(
initializer
(
weight_init
,
[
out_channels
,
in_channels
]),
name
=
"weight"
)
self
.
weight
=
Parameter
(
initializer
(
weight_init
,
[
out_channels
,
in_channels
]),
name
=
"weight"
)
if
self
.
has_bias
:
if
self
.
has_bias
:
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
out_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
out_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
bias_init
,
[
out_channels
]),
name
=
"bias"
)
self
.
bias
=
Parameter
(
initializer
(
bias_init
,
[
out_channels
]),
name
=
"bias"
)
...
...
example/yolov3_coco2017/train.py
浏览文件 @
66bbdb4a
...
@@ -56,7 +56,7 @@ def init_net_param(network, init_value='ones'):
...
@@ -56,7 +56,7 @@ def init_net_param(network, init_value='ones'):
params
=
network
.
trainable_params
()
params
=
network
.
trainable_params
()
for
p
in
params
:
for
p
in
params
:
if
isinstance
(
p
.
data
,
Tensor
)
and
'beta'
not
in
p
.
name
and
'gamma'
not
in
p
.
name
and
'bias'
not
in
p
.
name
:
if
isinstance
(
p
.
data
,
Tensor
)
and
'beta'
not
in
p
.
name
and
'gamma'
not
in
p
.
name
and
'bias'
not
in
p
.
name
:
p
.
set_parameter_data
(
initializer
(
init_value
,
p
.
data
.
shape
(),
p
.
data
.
dtype
()
))
p
.
set_parameter_data
(
initializer
(
init_value
,
p
.
data
.
shape
,
p
.
data
.
dtype
))
def
main
():
def
main
():
...
...
mindspore/ccsrc/ir/tensor.cc
浏览文件 @
66bbdb4a
...
@@ -384,6 +384,28 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
...
@@ -384,6 +384,28 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
.
def
(
py
::
init
<
py
::
tuple
,
TypePtr
>
(),
py
::
arg
(
"input"
),
py
::
arg
(
"dtype"
)
=
nullptr
)
.
def
(
py
::
init
<
py
::
tuple
,
TypePtr
>
(),
py
::
arg
(
"input"
),
py
::
arg
(
"dtype"
)
=
nullptr
)
.
def
(
py
::
init
<
Tensor
,
TypePtr
>
(),
py
::
arg
(
"input"
),
py
::
arg
(
"dtype"
)
=
nullptr
)
.
def
(
py
::
init
<
Tensor
,
TypePtr
>
(),
py
::
arg
(
"input"
),
py
::
arg
(
"dtype"
)
=
nullptr
)
.
def_readonly
(
PYTHON_TENSOR_FLAG
,
&
Tensor
::
parse_info_
)
.
def_readonly
(
PYTHON_TENSOR_FLAG
,
&
Tensor
::
parse_info_
)
.
def_property_readonly
(
"dtype"
,
&
Tensor
::
Dtype
,
R"mydelimiter(
Get the tensor's data type.
Returns:
type, the data type of tensor.
Examples:
>>> data = mindspore.Tensor(np.ones((2, 1), np.int32))
>>> data.dtype
Int32
)mydelimiter"
)
.
def_property_readonly
(
"shape"
,
&
Tensor
::
GetPyTupleShape
,
R"mydelimiter(
Get the tensor's shape.
Returns:
tuple[int], the shape of tensor.
Examples:
>>> data = mindspore.Tensor(np.ones((3, 3)))
>>> data.shape()
(3, 3)
)mydelimiter"
)
.
def
(
"asnumpy"
,
&
Tensor
::
data_sync
,
R"mydelimiter(
.
def
(
"asnumpy"
,
&
Tensor
::
data_sync
,
R"mydelimiter(
Convert tensor to numpy.ndarray.
Convert tensor to numpy.ndarray.
...
@@ -437,17 +459,6 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
...
@@ -437,17 +459,6 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
>>> data.dim()
>>> data.dim()
2
2
)mydelimiter"
)
)mydelimiter"
)
.
def
(
"dtype"
,
&
Tensor
::
Dtype
,
R"mydelimiter(
Get the tensor's data type.
Returns:
type, the data type of tensor.
Examples:
>>> data = mindspore.Tensor(np.ones((2, 1), np.int32))
>>> data.dtype()
Int32
)mydelimiter"
)
.
def
(
"set_dtype"
,
&
Tensor
::
SetDtype
,
R"mydelimiter(
.
def
(
"set_dtype"
,
&
Tensor
::
SetDtype
,
R"mydelimiter(
Set the tensor's data type.
Set the tensor's data type.
...
@@ -459,17 +470,6 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
...
@@ -459,17 +470,6 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
>>> data.set_dtype(mindspore.int32)
>>> data.set_dtype(mindspore.int32)
mindspore.int32
mindspore.int32
)mydelimiter"
)
)mydelimiter"
)
.
def
(
"shape"
,
&
Tensor
::
GetPyTupleShape
,
R"mydelimiter(
Get the tensor's shape.
Returns:
tuple[int], the shape of tensor.
Examples:
>>> data = mindspore.Tensor(np.ones((3, 3)))
>>> data.shape()
(3, 3)
)mydelimiter"
)
.
def
(
"__str__"
,
&
Tensor
::
ToString
)
.
def
(
"__str__"
,
&
Tensor
::
ToString
)
.
def
(
"__repr__"
,
&
Tensor
::
ToStringRepr
)
.
def
(
"__repr__"
,
&
Tensor
::
ToStringRepr
)
.
def
(
py
::
pickle
(
.
def
(
py
::
pickle
(
...
@@ -488,8 +488,8 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
...
@@ -488,8 +488,8 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
(
void
)
py
::
class_
<
MetaTensor
,
std
::
shared_ptr
<
MetaTensor
>>
(
*
m
,
"MetaTensor"
)
(
void
)
py
::
class_
<
MetaTensor
,
std
::
shared_ptr
<
MetaTensor
>>
(
*
m
,
"MetaTensor"
)
.
def
(
py
::
init
<
TypePtr
,
const
std
::
vector
<
int
>>
(),
py
::
arg
(
"dtype"
),
py
::
arg
(
"shape"
))
.
def
(
py
::
init
<
TypePtr
,
const
std
::
vector
<
int
>>
(),
py
::
arg
(
"dtype"
),
py
::
arg
(
"shape"
))
.
def_readonly
(
PYTHON_META_TENSOR_FLAG
,
&
MetaTensor
::
parse_info_
)
.
def_readonly
(
PYTHON_META_TENSOR_FLAG
,
&
MetaTensor
::
parse_info_
)
.
def
(
"dtype"
,
&
MetaTensor
::
Dtype
,
"Get the MetaTensor's dtype."
)
.
def
_property_readonly
(
"dtype"
,
&
MetaTensor
::
Dtype
,
"Get the MetaTensor's dtype."
)
.
def
(
"shape"
,
&
MetaTensor
::
shape
,
"Get the MetaTensor's shape."
);
.
def
_property_readonly
(
"shape"
,
&
MetaTensor
::
shape
,
"Get the MetaTensor's shape."
);
}));
}));
}
// namespace tensor
}
// namespace tensor
}
// namespace mindspore
}
// namespace mindspore
mindspore/common/dtype.py
浏览文件 @
66bbdb4a
...
@@ -170,8 +170,8 @@ def get_py_obj_dtype(obj):
...
@@ -170,8 +170,8 @@ def get_py_obj_dtype(obj):
Type of MindSpore type.
Type of MindSpore type.
"""
"""
# Tensor
# Tensor
if
hasattr
(
obj
,
'dtype'
)
and
callable
(
obj
.
dtype
)
and
isinstance
(
obj
.
dtype
()
,
typing
.
Type
):
if
hasattr
(
obj
,
'dtype'
)
and
isinstance
(
obj
.
dtype
,
typing
.
Type
):
return
tensor_type
(
obj
.
dtype
()
)
return
tensor_type
(
obj
.
dtype
)
if
hasattr
(
obj
,
'__primitive_flag__'
)
or
hasattr
(
obj
,
'construct'
):
if
hasattr
(
obj
,
'__primitive_flag__'
)
or
hasattr
(
obj
,
'construct'
):
return
function
return
function
if
isinstance
(
obj
,
(
typing
.
Type
,
type
)):
if
isinstance
(
obj
,
(
typing
.
Type
,
type
)):
...
...
mindspore/common/initializer.py
浏览文件 @
66bbdb4a
...
@@ -331,11 +331,11 @@ def initializer(init, shape=None, dtype=mstype.float32):
...
@@ -331,11 +331,11 @@ def initializer(init, shape=None, dtype=mstype.float32):
raise
TypeError
(
"Unsupported init type '{}'."
.
format
(
type
(
init
)))
raise
TypeError
(
"Unsupported init type '{}'."
.
format
(
type
(
init
)))
if
isinstance
(
init
,
Tensor
):
if
isinstance
(
init
,
Tensor
):
init_shape
=
init
.
shape
()
init_shape
=
init
.
shape
shape
=
shape
if
isinstance
(
shape
,
(
tuple
,
list
))
else
[
shape
]
shape
=
shape
if
isinstance
(
shape
,
(
tuple
,
list
))
else
[
shape
]
if
shape
is
not
None
and
init_shape
!=
tuple
(
shape
):
if
shape
is
not
None
and
init_shape
!=
tuple
(
shape
):
raise
ValueError
(
"The shape of init should be same as variable shape, but got the shape of init {} and "
raise
ValueError
(
"The shape of init should be same as variable shape, but got the shape of init {} and "
"the variable shape {}."
.
format
(
list
(
init
.
shape
()
),
shape
))
"the variable shape {}."
.
format
(
list
(
init
.
shape
),
shape
))
return
init
return
init
if
isinstance
(
shape
,
list
):
if
isinstance
(
shape
,
list
):
...
...
mindspore/common/parameter.py
浏览文件 @
66bbdb4a
...
@@ -140,8 +140,8 @@ class Parameter:
...
@@ -140,8 +140,8 @@ class Parameter:
x
.
name
=
prefix
+
'.'
+
x
.
name
x
.
name
=
prefix
+
'.'
+
x
.
name
x
.
is_init
=
False
x
.
is_init
=
False
if
init
!=
'same'
:
if
init
!=
'same'
:
shape
=
self
.
default_input
.
shape
()
shape
=
self
.
default_input
.
shape
dtype
=
self
.
default_input
.
dtype
()
dtype
=
self
.
default_input
.
dtype
if
isinstance
(
init
,
(
str
,
Initializer
,
numbers
.
Number
)):
if
isinstance
(
init
,
(
str
,
Initializer
,
numbers
.
Number
)):
x
.
init_mode
=
initializer
(
init
,
shape
=
shape
,
dtype
=
dtype
)
x
.
init_mode
=
initializer
(
init
,
shape
=
shape
,
dtype
=
dtype
)
x
.
default_input
=
MetaTensor
(
dtype
,
shape
)
x
.
default_input
=
MetaTensor
(
dtype
,
shape
)
...
...
mindspore/common/tensor.py
浏览文件 @
66bbdb4a
...
@@ -45,13 +45,13 @@ class Tensor(Tensor_):
...
@@ -45,13 +45,13 @@ class Tensor(Tensor_):
>>> # init a tensor with input data
>>> # init a tensor with input data
>>> t1 = Tensor(np.zeros([1, 2, 3]), mindspore.float32)
>>> t1 = Tensor(np.zeros([1, 2, 3]), mindspore.float32)
>>> assert isinstance(t1, Tensor)
>>> assert isinstance(t1, Tensor)
>>> assert t1.shape
()
== (1, 2, 3)
>>> assert t1.shape == (1, 2, 3)
>>> assert t1.dtype
()
== mindspore.float32
>>> assert t1.dtype == mindspore.float32
>>>
>>>
>>> # init a tensor with a float scalar
>>> # init a tensor with a float scalar
>>> t2 = Tensor(0.1)
>>> t2 = Tensor(0.1)
>>> assert isinstance(t2, Tensor)
>>> assert isinstance(t2, Tensor)
>>> assert t2.dtype
()
== mindspore.float64
>>> assert t2.dtype == mindspore.float64
"""
"""
def
__init__
(
self
,
input_data
,
dtype
=
None
):
def
__init__
(
self
,
input_data
,
dtype
=
None
):
...
@@ -80,7 +80,7 @@ class Tensor(Tensor_):
...
@@ -80,7 +80,7 @@ class Tensor(Tensor_):
return
False
return
False
# The GE backend don't support single `Equal` operator execution.
# The GE backend don't support single `Equal` operator execution.
# bool type is not supported for `Equal` operator in backend.
# bool type is not supported for `Equal` operator in backend.
if
context
.
get_context
(
"enable_ge"
)
or
self
.
dtype
()
==
mstype
.
bool_
or
other
.
dtype
()
==
mstype
.
bool_
:
if
context
.
get_context
(
"enable_ge"
)
or
self
.
dtype
==
mstype
.
bool_
or
other
.
dtype
==
mstype
.
bool_
:
return
Tensor
(
np
.
array
(
self
.
asnumpy
()
==
other
.
asnumpy
()))
return
Tensor
(
np
.
array
(
self
.
asnumpy
()
==
other
.
asnumpy
()))
return
tensor_operator_registry
.
get
(
'__eq__'
)(
self
,
other
)
return
tensor_operator_registry
.
get
(
'__eq__'
)(
self
,
other
)
...
@@ -166,7 +166,7 @@ class Tensor(Tensor_):
...
@@ -166,7 +166,7 @@ class Tensor(Tensor_):
return
out
[
0
]
return
out
[
0
]
def
__str__
(
self
):
def
__str__
(
self
):
if
self
.
dtype
()
==
mstype
.
type_none
:
if
self
.
dtype
==
mstype
.
type_none
:
return
"Unknown Tensor type!"
return
"Unknown Tensor type!"
return
str
(
self
.
asnumpy
())
return
str
(
self
.
asnumpy
())
...
...
mindspore/model_zoo/mobilenetV2.py
浏览文件 @
66bbdb4a
...
@@ -267,21 +267,21 @@ class MobileNetV2(nn.Cell):
...
@@ -267,21 +267,21 @@ class MobileNetV2(nn.Cell):
if
isinstance
(
m
,
(
nn
.
Conv2d
,
DepthwiseConv
)):
if
isinstance
(
m
,
(
nn
.
Conv2d
,
DepthwiseConv
)):
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
m
.
gamma
.
set_parameter_data
(
m
.
gamma
.
set_parameter_data
(
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
,
dtype
=
"float32"
)))
m
.
beta
.
set_parameter_data
(
m
.
beta
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
Dense
):
elif
isinstance
(
m
,
nn
.
Dense
):
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
0.01
,
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
0
,
0.01
,
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
def
mobilenet_v2
(
**
kwargs
):
def
mobilenet_v2
(
**
kwargs
):
...
...
mindspore/model_zoo/mobilenetV3.py
浏览文件 @
66bbdb4a
...
@@ -322,21 +322,21 @@ class MobileNetV3(nn.Cell):
...
@@ -322,21 +322,21 @@ class MobileNetV3(nn.Cell):
if
isinstance
(
m
,
(
nn
.
Conv2d
)):
if
isinstance
(
m
,
(
nn
.
Conv2d
)):
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
m
.
gamma
.
set_parameter_data
(
m
.
gamma
.
set_parameter_data
(
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
,
dtype
=
"float32"
)))
m
.
beta
.
set_parameter_data
(
m
.
beta
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
Dense
):
elif
isinstance
(
m
,
nn
.
Dense
):
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
0.01
,
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
0
,
0.01
,
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
def
mobilenet_v3
(
model_name
,
**
kwargs
):
def
mobilenet_v3
(
model_name
,
**
kwargs
):
...
...
mindspore/nn/layer/basic.py
浏览文件 @
66bbdb4a
...
@@ -131,7 +131,7 @@ class Flatten(Cell):
...
@@ -131,7 +131,7 @@ class Flatten(Cell):
Examples:
Examples:
>>> net = nn.Flatten()
>>> net = nn.Flatten()
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
>>> input.shape
()
>>> input.shape
(2, 2, 2)
(2, 2, 2)
>>> net(input)
>>> net(input)
[[1.2 1.2 2.1 2.1]
[[1.2 1.2 2.1 2.1]
...
@@ -198,15 +198,15 @@ class Dense(Cell):
...
@@ -198,15 +198,15 @@ class Dense(Cell):
self
.
has_bias
=
check_bool
(
has_bias
)
self
.
has_bias
=
check_bool
(
has_bias
)
if
isinstance
(
weight_init
,
Tensor
):
if
isinstance
(
weight_init
,
Tensor
):
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
()
[
0
]
!=
out_channels
or
\
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
[
0
]
!=
out_channels
or
\
weight_init
.
shape
()
[
1
]
!=
in_channels
:
weight_init
.
shape
[
1
]
!=
in_channels
:
raise
ValueError
(
"weight_init shape error"
)
raise
ValueError
(
"weight_init shape error"
)
self
.
weight
=
Parameter
(
initializer
(
weight_init
,
[
out_channels
,
in_channels
]),
name
=
"weight"
)
self
.
weight
=
Parameter
(
initializer
(
weight_init
,
[
out_channels
,
in_channels
]),
name
=
"weight"
)
if
self
.
has_bias
:
if
self
.
has_bias
:
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
out_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
out_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
bias_init
,
[
out_channels
]),
name
=
"bias"
)
self
.
bias
=
Parameter
(
initializer
(
bias_init
,
[
out_channels
]),
name
=
"bias"
)
...
...
mindspore/nn/layer/combined.py
浏览文件 @
66bbdb4a
...
@@ -69,7 +69,7 @@ class Conv2d(Cell):
...
@@ -69,7 +69,7 @@ class Conv2d(Cell):
Examples:
Examples:
>>> net = combined.Conv2d(120, 240, 4, batchnorm=True, activation='ReLU')
>>> net = combined.Conv2d(120, 240, 4, batchnorm=True, activation='ReLU')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape
()
>>> net(input).shape
(1, 240, 1024, 640)
(1, 240, 1024, 640)
"""
"""
...
...
mindspore/nn/layer/conv.py
浏览文件 @
66bbdb4a
...
@@ -168,7 +168,7 @@ class Conv2d(_Conv):
...
@@ -168,7 +168,7 @@ class Conv2d(_Conv):
Examples:
Examples:
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape
()
>>> net(input).shape
(1, 240, 1024, 640)
(1, 240, 1024, 640)
"""
"""
@
cell_attr_register
@
cell_attr_register
...
...
mindspore/nn/layer/embedding.py
浏览文件 @
66bbdb4a
...
@@ -56,7 +56,7 @@ class Embedding(Cell):
...
@@ -56,7 +56,7 @@ class Embedding(Cell):
>>>
>>>
>>> # Maps the input word IDs to word embedding.
>>> # Maps the input word IDs to word embedding.
>>> output = net(input_data)
>>> output = net(input_data)
>>> output.shape
()
>>> output.shape
(8, 128, 768)
(8, 128, 768)
"""
"""
def
__init__
(
self
,
vocab_size
,
embedding_size
,
use_one_hot
=
False
,
embedding_table
=
'normal'
,
dtype
=
mstype
.
float32
):
def
__init__
(
self
,
vocab_size
,
embedding_size
,
use_one_hot
=
False
,
embedding_table
=
'normal'
,
dtype
=
mstype
.
float32
):
...
...
mindspore/nn/layer/normalization.py
浏览文件 @
66bbdb4a
...
@@ -474,7 +474,7 @@ class LayerNorm(Cell):
...
@@ -474,7 +474,7 @@ class LayerNorm(Cell):
Examples:
Examples:
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> shape1 = x.shape
()
[1:]
>>> shape1 = x.shape[1:]
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m(x)
>>> m(x)
"""
"""
...
...
mindspore/nn/layer/pooling.py
浏览文件 @
66bbdb4a
...
@@ -113,7 +113,7 @@ class MaxPool2d(_PoolNd):
...
@@ -113,7 +113,7 @@ class MaxPool2d(_PoolNd):
[0. 0. 4. 0.]
[0. 0. 4. 0.]
[1. 8. 7. 0.]]]]
[1. 8. 7. 0.]]]]
>>> output = pool(x)
>>> output = pool(x)
>>> output.shape
()
>>> output.shape
(1, 2, 2, 2)
(1, 2, 2, 2)
>>> output
>>> output
[[[[7. 8.]
[[[[7. 8.]
...
@@ -195,7 +195,7 @@ class AvgPool2d(_PoolNd):
...
@@ -195,7 +195,7 @@ class AvgPool2d(_PoolNd):
[0. 8. 9. 7.]
[0. 8. 9. 7.]
[2. 1. 4. 9.]]]]
[2. 1. 4. 9.]]]]
>>> output = pool(x)
>>> output = pool(x)
>>> output.shape
()
>>> output.shape
(1, 2, 2, 2)
(1, 2, 2, 2)
>>> output
>>> output
[[[[4.888889 4.4444447]
[[[[4.888889 4.4444447]
...
@@ -260,7 +260,7 @@ class AvgPool1d(_PoolNd):
...
@@ -260,7 +260,7 @@ class AvgPool1d(_PoolNd):
>>> pool = nn.AvgPool1d(kernel_size=6, strides=1)
>>> pool = nn.AvgPool1d(kernel_size=6, strides=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
>>> output = pool(x)
>>> output = pool(x)
>>> output.shape
()
>>> output.shape
(1, 3, 1)
(1, 3, 1)
"""
"""
...
...
mindspore/nn/layer/quant.py
浏览文件 @
66bbdb4a
...
@@ -571,8 +571,8 @@ class DenseQuant(Cell):
...
@@ -571,8 +571,8 @@ class DenseQuant(Cell):
self
.
has_bias
=
check_bool
(
has_bias
)
self
.
has_bias
=
check_bool
(
has_bias
)
if
isinstance
(
weight_init
,
Tensor
):
if
isinstance
(
weight_init
,
Tensor
):
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
()
[
0
]
!=
out_channels
or
\
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
[
0
]
!=
out_channels
or
\
weight_init
.
shape
()
[
1
]
!=
in_channels
:
weight_init
.
shape
[
1
]
!=
in_channels
:
raise
ValueError
(
"weight_init shape error"
)
raise
ValueError
(
"weight_init shape error"
)
self
.
weight
=
Parameter
(
initializer
(
self
.
weight
=
Parameter
(
initializer
(
...
@@ -580,7 +580,7 @@ class DenseQuant(Cell):
...
@@ -580,7 +580,7 @@ class DenseQuant(Cell):
if
self
.
has_bias
:
if
self
.
has_bias
:
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
out_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
out_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
self
.
bias
=
Parameter
(
initializer
(
...
...
mindspore/ops/composite/multitype_ops/greater_impl.py
浏览文件 @
66bbdb4a
...
@@ -23,7 +23,7 @@ greater = base.MultitypeFuncGraph("greater")
...
@@ -23,7 +23,7 @@ greater = base.MultitypeFuncGraph("greater")
@
greater
.
register
(
"Number"
,
"Number"
)
@
greater
.
register
(
"Number"
,
"Number"
)
def
_greater_scala
(
x
,
y
):
def
_greater_scala
r
(
x
,
y
):
"""
"""
Determine whether two numbers are greater.
Determine whether two numbers are greater.
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
66bbdb4a
...
@@ -145,10 +145,10 @@ class SameTypeShape(PrimitiveWithInfer):
...
@@ -145,10 +145,10 @@ class SameTypeShape(PrimitiveWithInfer):
def
__call__
(
self
,
x
,
y
):
def
__call__
(
self
,
x
,
y
):
"""run in PyNative mode"""
"""run in PyNative mode"""
validator
.
check_value_type
(
"x"
,
x
,
Tensor
,
self
.
name
)
validator
.
check_value_type
(
'x'
,
x
,
Tensor
,
self
.
name
)
validator
.
check_value_type
(
"y"
,
y
,
Tensor
,
self
.
name
)
validator
.
check_value_type
(
'y'
,
y
,
Tensor
,
self
.
name
)
validator
.
check
(
'x dtype'
,
x
.
dtype
(),
'y dtype'
,
y
.
dtype
()
,
Rel
.
EQ
,
self
.
name
,
TypeError
)
validator
.
check
(
'x dtype'
,
x
.
dtype
,
'y dtype'
,
y
.
dtype
,
Rel
.
EQ
,
self
.
name
,
TypeError
)
validator
.
check
(
'x shape'
,
x
.
shape
(),
'y shape'
,
y
.
shape
()
,
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
'x shape'
,
x
.
shape
,
'y shape'
,
y
.
shape
,
Rel
.
EQ
,
self
.
name
)
return
x
return
x
def
__infer__
(
self
,
x
,
y
):
def
__infer__
(
self
,
x
,
y
):
...
@@ -187,7 +187,7 @@ class Cast(PrimitiveWithInfer):
...
@@ -187,7 +187,7 @@ class Cast(PrimitiveWithInfer):
def
check_elim
(
self
,
x
,
dtype
):
def
check_elim
(
self
,
x
,
dtype
):
if
isinstance
(
x
,
Tensor
):
if
isinstance
(
x
,
Tensor
):
if
x
.
dtype
()
==
dtype
:
if
x
.
dtype
==
dtype
:
return
(
True
,
x
)
return
(
True
,
x
)
return
(
False
,
None
)
return
(
False
,
None
)
raise
ValueError
(
"Expecting (Tensor, dtype), got : {}"
.
format
(
inputs
))
raise
ValueError
(
"Expecting (Tensor, dtype), got : {}"
.
format
(
inputs
))
...
@@ -498,7 +498,7 @@ class GatherV2(PrimitiveWithInfer):
...
@@ -498,7 +498,7 @@ class GatherV2(PrimitiveWithInfer):
The original Tensor.
The original Tensor.
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
Specifies the indices of elements of the original Tensor. Must be in the range
Specifies the indices of elements of the original Tensor. Must be in the range
`[0, input_param.shape
()
[axis])`.
`[0, input_param.shape[axis])`.
- **axis** (int) - Specifies the dimension index to gather indices.
- **axis** (int) - Specifies the dimension index to gather indices.
Outputs:
Outputs:
...
@@ -542,7 +542,7 @@ class SparseGatherV2(GatherV2):
...
@@ -542,7 +542,7 @@ class SparseGatherV2(GatherV2):
The original Tensor.
The original Tensor.
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
Specifies the indices of elements of the original Tensor. Must be in the range
Specifies the indices of elements of the original Tensor. Must be in the range
`[0, input_param.shape
()
[axis])`.
`[0, input_param.shape[axis])`.
- **axis** (int) - Specifies the dimension index to gather indices.
- **axis** (int) - Specifies the dimension index to gather indices.
Outputs:
Outputs:
...
@@ -700,7 +700,7 @@ class Split(PrimitiveWithInfer):
...
@@ -700,7 +700,7 @@ class Split(PrimitiveWithInfer):
output_num (int): The number of output tensors. Default: 1.
output_num (int): The number of output tensors. Default: 1.
Raises:
Raises:
ValueError: If axis is out of the range [-len(input_x.shape
()), len(input_x.shape()
)),
ValueError: If axis is out of the range [-len(input_x.shape
), len(input_x.shape
)),
or if the output_num is less than or equal to 0, or if the
or if the output_num is less than or equal to 0, or if the
dimension which to split cannot be evenly divided by output_num.
dimension which to split cannot be evenly divided by output_num.
...
@@ -1644,7 +1644,7 @@ class Unpack(PrimitiveWithInfer):
...
@@ -1644,7 +1644,7 @@ class Unpack(PrimitiveWithInfer):
A tuple of Tensors, the shape of each objects is same.
A tuple of Tensors, the shape of each objects is same.
Raises:
Raises:
ValueError: If axis is out of the range [-len(input_x.shape
()), len(input_x.shape()
)).
ValueError: If axis is out of the range [-len(input_x.shape
), len(input_x.shape
)).
Examples:
Examples:
>>> unpack = P.Unpack()
>>> unpack = P.Unpack()
...
@@ -1850,7 +1850,7 @@ class StridedSlice(PrimitiveWithInfer):
...
@@ -1850,7 +1850,7 @@ class StridedSlice(PrimitiveWithInfer):
>>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
>>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
>>> slice = P.StridedSlice()
>>> slice = P.StridedSlice()
>>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
>>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
>>> output.shape
()
>>> output.shape
(1, 1, 3)
(1, 1, 3)
>>> output
>>> output
[[[3, 3, 3]]]
[[[3, 3, 3]]]
...
@@ -1974,7 +1974,7 @@ class Diag(PrimitiveWithInfer):
...
@@ -1974,7 +1974,7 @@ class Diag(PrimitiveWithInfer):
if
x
is
None
:
if
x
is
None
:
return
None
return
None
# do constant-folding only when x rank is 1
# do constant-folding only when x rank is 1
if
len
(
x
.
shape
()
)
!=
1
:
if
len
(
x
.
shape
)
!=
1
:
return
None
return
None
ret
=
np
.
diag
(
x
.
asnumpy
())
ret
=
np
.
diag
(
x
.
asnumpy
())
return
Tensor
(
ret
)
return
Tensor
(
ret
)
...
@@ -2026,7 +2026,7 @@ class DiagPart(PrimitiveWithInfer):
...
@@ -2026,7 +2026,7 @@ class DiagPart(PrimitiveWithInfer):
if
x
is
None
:
if
x
is
None
:
return
None
return
None
# do constant-folding only when x rank is 2
# do constant-folding only when x rank is 2
if
len
(
x
.
shape
()
)
!=
2
:
if
len
(
x
.
shape
)
!=
2
:
return
None
return
None
ret
=
np
.
diag
(
x
.
asnumpy
())
ret
=
np
.
diag
(
x
.
asnumpy
())
return
Tensor
(
ret
)
return
Tensor
(
ret
)
...
...
mindspore/ops/operations/math_ops.py
浏览文件 @
66bbdb4a
...
@@ -2329,8 +2329,8 @@ class NMSWithMask(PrimitiveWithInfer):
...
@@ -2329,8 +2329,8 @@ class NMSWithMask(PrimitiveWithInfer):
def
infer_shape
(
self
,
bboxes_shape
):
def
infer_shape
(
self
,
bboxes_shape
):
cls_name
=
self
.
name
cls_name
=
self
.
name
validator
.
check_integer
(
"bboxes rank"
,
len
(
bboxes_shape
),
2
,
Rel
.
EQ
,
cls_name
)
validator
.
check_integer
(
"bboxes rank"
,
len
(
bboxes_shape
),
2
,
Rel
.
EQ
,
cls_name
)
validator
.
check_integer
(
"bboxes.shape
()
[0]"
,
bboxes_shape
[
0
],
0
,
Rel
.
GT
,
cls_name
)
validator
.
check_integer
(
"bboxes.shape[0]"
,
bboxes_shape
[
0
],
0
,
Rel
.
GT
,
cls_name
)
validator
.
check_integer
(
"bboxes.shape
()
[1]"
,
bboxes_shape
[
1
],
5
,
Rel
.
EQ
,
cls_name
)
validator
.
check_integer
(
"bboxes.shape[1]"
,
bboxes_shape
[
1
],
5
,
Rel
.
EQ
,
cls_name
)
num
=
bboxes_shape
[
0
]
num
=
bboxes_shape
[
0
]
return
(
bboxes_shape
,
(
num
,),
(
num
,))
return
(
bboxes_shape
,
(
num
,),
(
num
,))
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
66bbdb4a
...
@@ -78,7 +78,7 @@ class Flatten(PrimitiveWithInfer):
...
@@ -78,7 +78,7 @@ class Flatten(PrimitiveWithInfer):
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
>>> flatten = P.Flatten()
>>> flatten = P.Flatten()
>>> output = flatten(input_tensor)
>>> output = flatten(input_tensor)
>>> assert output.shape
()
== (1, 24)
>>> assert output.shape == (1, 24)
"""
"""
@
prim_attr_register
@
prim_attr_register
...
@@ -840,7 +840,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
...
@@ -840,7 +840,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
>>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32)
>>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32)
>>> depthwise_conv2d = P.DepthwiseConv2dNative(channel_multiplier = 3, kernel_size = (3, 3))
>>> depthwise_conv2d = P.DepthwiseConv2dNative(channel_multiplier = 3, kernel_size = (3, 3))
>>> output = depthwise_conv2d(input, weight)
>>> output = depthwise_conv2d(input, weight)
>>> assert output.shape
()
== (10, 96, 30, 30)
>>> assert output.shape == (10, 96, 30, 30)
"""
"""
@
prim_attr_register
@
prim_attr_register
...
@@ -2057,7 +2057,7 @@ class DropoutDoMask(PrimitiveWithInfer):
...
@@ -2057,7 +2057,7 @@ class DropoutDoMask(PrimitiveWithInfer):
>>> dropout_do_mask = P.DropoutDoMask()
>>> dropout_do_mask = P.DropoutDoMask()
>>> mask = dropout_gen_mask(shape, keep_prob)
>>> mask = dropout_gen_mask(shape, keep_prob)
>>> output = dropout_do_mask(x, mask, keep_prob)
>>> output = dropout_do_mask(x, mask, keep_prob)
>>> assert output.shape
()
== (20, 16, 50)
>>> assert output.shape == (20, 16, 50)
"""
"""
@
prim_attr_register
@
prim_attr_register
...
@@ -2114,7 +2114,7 @@ class ResizeBilinear(PrimitiveWithInfer):
...
@@ -2114,7 +2114,7 @@ class ResizeBilinear(PrimitiveWithInfer):
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.int32)
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.int32)
>>> resize_bilinear = P.ResizeBilinear((5, 5))
>>> resize_bilinear = P.ResizeBilinear((5, 5))
>>> result = resize_bilinear(tensor)
>>> result = resize_bilinear(tensor)
>>> assert result.shape
()
== (5, 5)
>>> assert result.shape == (5, 5)
"""
"""
@
prim_attr_register
@
prim_attr_register
...
...
mindspore/train/_utils.py
浏览文件 @
66bbdb4a
...
@@ -157,8 +157,8 @@ def _to_full_tensor(elem, device_num, global_rank, scaling_sens=None):
...
@@ -157,8 +157,8 @@ def _to_full_tensor(elem, device_num, global_rank, scaling_sens=None):
data
=
Tensor
(
data
)
data
=
Tensor
(
data
)
if
not
isinstance
(
data
,
Tensor
):
if
not
isinstance
(
data
,
Tensor
):
raise
ValueError
(
"elements in tensors must be Tensor"
)
raise
ValueError
(
"elements in tensors must be Tensor"
)
shape_
=
data
.
shape
()
shape_
=
data
.
shape
type_
=
data
.
dtype
()
type_
=
data
.
dtype
new_shape
=
()
new_shape
=
()
batchsize_per_device
=
1
batchsize_per_device
=
1
for
i
,
item
in
enumerate
(
shape_
):
for
i
,
item
in
enumerate
(
shape_
):
...
...
mindspore/train/serialization.py
浏览文件 @
66bbdb4a
...
@@ -42,17 +42,17 @@ def _special_process_par(par, new_par):
...
@@ -42,17 +42,17 @@ def _special_process_par(par, new_par):
Like (12,2048,1,1)->(12,2048), this case is caused by GE 4 dimensions tensor.
Like (12,2048,1,1)->(12,2048), this case is caused by GE 4 dimensions tensor.
"""
"""
par_shape_len
=
len
(
par
.
data
.
shape
()
)
par_shape_len
=
len
(
par
.
data
.
shape
)
new_par_shape_len
=
len
(
new_par
.
data
.
shape
()
)
new_par_shape_len
=
len
(
new_par
.
data
.
shape
)
delta_len
=
new_par_shape_len
-
par_shape_len
delta_len
=
new_par_shape_len
-
par_shape_len
delta_i
=
0
delta_i
=
0
for
delta_i
in
range
(
delta_len
):
for
delta_i
in
range
(
delta_len
):
if
new_par
.
data
.
shape
()
[
par_shape_len
+
delta_i
]
!=
1
:
if
new_par
.
data
.
shape
[
par_shape_len
+
delta_i
]
!=
1
:
break
break
if
delta_i
==
delta_len
-
1
:
if
delta_i
==
delta_len
-
1
:
new_val
=
new_par
.
data
.
asnumpy
()
new_val
=
new_par
.
data
.
asnumpy
()
new_val
=
new_val
.
reshape
(
par
.
data
.
shape
()
)
new_val
=
new_val
.
reshape
(
par
.
data
.
shape
)
par
.
set_parameter_data
(
Tensor
(
new_val
,
par
.
data
.
dtype
()
))
par
.
set_parameter_data
(
Tensor
(
new_val
,
par
.
data
.
dtype
))
return
True
return
True
return
False
return
False
...
@@ -61,17 +61,17 @@ def _update_param(param, new_param):
...
@@ -61,17 +61,17 @@ def _update_param(param, new_param):
"""Updates param's data from new_param's data."""
"""Updates param's data from new_param's data."""
if
isinstance
(
param
.
data
,
Tensor
)
and
isinstance
(
new_param
.
data
,
Tensor
):
if
isinstance
(
param
.
data
,
Tensor
)
and
isinstance
(
new_param
.
data
,
Tensor
):
if
param
.
data
.
dtype
()
!=
new_param
.
data
.
dtype
()
:
if
param
.
data
.
dtype
!=
new_param
.
data
.
dtype
:
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
msg
=
(
"Net parameters {} type({}) different from parameter_dict's({})"
msg
=
(
"Net parameters {} type({}) different from parameter_dict's({})"
.
format
(
param
.
name
,
param
.
data
.
dtype
(),
new_param
.
data
.
dtype
()
))
.
format
(
param
.
name
,
param
.
data
.
dtype
,
new_param
.
data
.
dtype
))
raise
RuntimeError
(
msg
)
raise
RuntimeError
(
msg
)
if
param
.
data
.
shape
()
!=
new_param
.
data
.
shape
()
:
if
param
.
data
.
shape
!=
new_param
.
data
.
shape
:
if
not
_special_process_par
(
param
,
new_param
):
if
not
_special_process_par
(
param
,
new_param
):
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
msg
=
(
"Net parameters {} shape({}) different from parameter_dict's({})"
msg
=
(
"Net parameters {} shape({}) different from parameter_dict's({})"
.
format
(
param
.
name
,
param
.
data
.
shape
(),
new_param
.
data
.
shape
()
))
.
format
(
param
.
name
,
param
.
data
.
shape
,
new_param
.
data
.
shape
))
raise
RuntimeError
(
msg
)
raise
RuntimeError
(
msg
)
return
return
...
@@ -79,12 +79,12 @@ def _update_param(param, new_param):
...
@@ -79,12 +79,12 @@ def _update_param(param, new_param):
return
return
if
isinstance
(
param
.
data
,
Tensor
)
and
not
isinstance
(
new_param
.
data
,
Tensor
):
if
isinstance
(
param
.
data
,
Tensor
)
and
not
isinstance
(
new_param
.
data
,
Tensor
):
if
param
.
data
.
shape
()
!=
(
1
,)
and
param
.
data
.
shape
()
!=
():
if
param
.
data
.
shape
!=
(
1
,)
and
param
.
data
.
shape
!=
():
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
msg
=
(
"Net parameters {} shape({}) is not (1,), inconsitent with parameter_dict's(scalar)."
msg
=
(
"Net parameters {} shape({}) is not (1,), inconsitent with parameter_dict's(scalar)."
.
format
(
param
.
name
,
param
.
data
.
shape
()
))
.
format
(
param
.
name
,
param
.
data
.
shape
))
raise
RuntimeError
(
msg
)
raise
RuntimeError
(
msg
)
param
.
set_parameter_data
(
initializer
(
new_param
.
data
,
param
.
data
.
shape
(),
param
.
data
.
dtype
()
))
param
.
set_parameter_data
(
initializer
(
new_param
.
data
,
param
.
data
.
shape
,
param
.
data
.
dtype
))
elif
isinstance
(
new_param
.
data
,
Tensor
)
and
not
isinstance
(
param
.
data
,
Tensor
):
elif
isinstance
(
new_param
.
data
,
Tensor
)
and
not
isinstance
(
param
.
data
,
Tensor
):
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
logger
.
error
(
"Failed to combine the net and the parameters for param %s."
,
param
.
name
)
...
@@ -120,12 +120,12 @@ def save_checkpoint(parameter_list, ckpoint_file_name):
...
@@ -120,12 +120,12 @@ def save_checkpoint(parameter_list, ckpoint_file_name):
param
[
"data"
].
init_data
()
param
[
"data"
].
init_data
()
param_data
=
param
[
"data"
].
asnumpy
().
reshape
(
-
1
)
param_data
=
param
[
"data"
].
asnumpy
().
reshape
(
-
1
)
param_tensor
.
tensor_content
=
param_data
.
tostring
()
param_tensor
.
tensor_content
=
param_data
.
tostring
()
param_tensor
.
tensor_type
=
str
(
param
[
"data"
].
dtype
()
)
param_tensor
.
tensor_type
=
str
(
param
[
"data"
].
dtype
)
if
param
[
'data'
].
shape
()
==
():
if
param
[
'data'
].
shape
==
():
param_tensor
.
dims
.
append
(
0
)
param_tensor
.
dims
.
append
(
0
)
else
:
else
:
for
dim
in
param
[
'data'
].
shape
()
:
for
dim
in
param
[
'data'
].
shape
:
param_tensor
.
dims
.
append
(
dim
)
param_tensor
.
dims
.
append
(
dim
)
with
open
(
ckpoint_file_name
,
"wb"
)
as
f
:
with
open
(
ckpoint_file_name
,
"wb"
)
as
f
:
...
...
model_zoo/bert/src/fused_layer_norm.py
浏览文件 @
66bbdb4a
...
@@ -73,7 +73,7 @@ class FusedLayerNorm(Cell):
...
@@ -73,7 +73,7 @@ class FusedLayerNorm(Cell):
Examples:
Examples:
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> shape1 = x.shape
()
[1:]
>>> shape1 = x.shape[1:]
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m(x)
>>> m(x)
"""
"""
...
...
model_zoo/mobilenetv2/src/mobilenetV2.py
浏览文件 @
66bbdb4a
...
@@ -267,21 +267,21 @@ class MobileNetV2(nn.Cell):
...
@@ -267,21 +267,21 @@ class MobileNetV2(nn.Cell):
if
isinstance
(
m
,
(
nn
.
Conv2d
,
DepthwiseConv
)):
if
isinstance
(
m
,
(
nn
.
Conv2d
,
DepthwiseConv
)):
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
m
.
gamma
.
set_parameter_data
(
m
.
gamma
.
set_parameter_data
(
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
,
dtype
=
"float32"
)))
m
.
beta
.
set_parameter_data
(
m
.
beta
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
Dense
):
elif
isinstance
(
m
,
nn
.
Dense
):
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
0.01
,
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
0
,
0.01
,
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
def
mobilenet_v2
(
**
kwargs
):
def
mobilenet_v2
(
**
kwargs
):
...
...
model_zoo/mobilenetv3/src/mobilenetV3.py
浏览文件 @
66bbdb4a
...
@@ -322,21 +322,21 @@ class MobileNetV3(nn.Cell):
...
@@ -322,21 +322,21 @@ class MobileNetV3(nn.Cell):
if
isinstance
(
m
,
(
nn
.
Conv2d
)):
if
isinstance
(
m
,
(
nn
.
Conv2d
)):
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
np
.
sqrt
(
2.
/
n
),
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
m
.
gamma
.
set_parameter_data
(
m
.
gamma
.
set_parameter_data
(
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
ones
(
m
.
gamma
.
data
.
shape
,
dtype
=
"float32"
)))
m
.
beta
.
set_parameter_data
(
m
.
beta
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
beta
.
data
.
shape
,
dtype
=
"float32"
)))
elif
isinstance
(
m
,
nn
.
Dense
):
elif
isinstance
(
m
,
nn
.
Dense
):
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
m
.
weight
.
set_parameter_data
(
Tensor
(
np
.
random
.
normal
(
0
,
0.01
,
m
.
weight
.
data
.
shape
()
).
astype
(
"float32"
)))
0
,
0.01
,
m
.
weight
.
data
.
shape
).
astype
(
"float32"
)))
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
m
.
bias
.
set_parameter_data
(
m
.
bias
.
set_parameter_data
(
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
()
,
dtype
=
"float32"
)))
Tensor
(
np
.
zeros
(
m
.
bias
.
data
.
shape
,
dtype
=
"float32"
)))
def
mobilenet_v3
(
model_name
,
**
kwargs
):
def
mobilenet_v3
(
model_name
,
**
kwargs
):
...
...
model_zoo/resnet101/train.py
浏览文件 @
66bbdb4a
...
@@ -66,12 +66,12 @@ if __name__ == '__main__':
...
@@ -66,12 +66,12 @@ if __name__ == '__main__':
for
_
,
cell
in
net
.
cells_and_names
():
for
_
,
cell
in
net
.
cells_and_names
():
if
isinstance
(
cell
,
nn
.
Conv2d
):
if
isinstance
(
cell
,
nn
.
Conv2d
):
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
XavierUniform
(),
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
XavierUniform
(),
cell
.
weight
.
default_input
.
shape
()
,
cell
.
weight
.
default_input
.
shape
,
cell
.
weight
.
default_input
.
dtype
()
).
to_tensor
()
cell
.
weight
.
default_input
.
dtype
).
to_tensor
()
if
isinstance
(
cell
,
nn
.
Dense
):
if
isinstance
(
cell
,
nn
.
Dense
):
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
TruncatedNormal
(),
cell
.
weight
.
default_input
=
weight_init
.
initializer
(
weight_init
.
TruncatedNormal
(),
cell
.
weight
.
default_input
.
shape
()
,
cell
.
weight
.
default_input
.
shape
,
cell
.
weight
.
default_input
.
dtype
()
).
to_tensor
()
cell
.
weight
.
default_input
.
dtype
).
to_tensor
()
if
not
config
.
label_smooth
:
if
not
config
.
label_smooth
:
config
.
label_smooth_factor
=
0.0
config
.
label_smooth_factor
=
0.0
loss
=
CrossEntropy
(
smooth_factor
=
config
.
label_smooth_factor
,
num_classes
=
config
.
class_num
)
loss
=
CrossEntropy
(
smooth_factor
=
config
.
label_smooth_factor
,
num_classes
=
config
.
class_num
)
...
...
model_zoo/ssd/src/init_params.py
浏览文件 @
66bbdb4a
...
@@ -23,9 +23,9 @@ def init_net_param(network, initialize_mode='TruncatedNormal'):
...
@@ -23,9 +23,9 @@ def init_net_param(network, initialize_mode='TruncatedNormal'):
for
p
in
params
:
for
p
in
params
:
if
isinstance
(
p
.
data
,
Tensor
)
and
'beta'
not
in
p
.
name
and
'gamma'
not
in
p
.
name
and
'bias'
not
in
p
.
name
:
if
isinstance
(
p
.
data
,
Tensor
)
and
'beta'
not
in
p
.
name
and
'gamma'
not
in
p
.
name
and
'bias'
not
in
p
.
name
:
if
initialize_mode
==
'TruncatedNormal'
:
if
initialize_mode
==
'TruncatedNormal'
:
p
.
set_parameter_data
(
initializer
(
TruncatedNormal
(
0.03
),
p
.
data
.
shape
(),
p
.
data
.
dtype
()
))
p
.
set_parameter_data
(
initializer
(
TruncatedNormal
(
0.03
),
p
.
data
.
shape
,
p
.
data
.
dtype
))
else
:
else
:
p
.
set_parameter_data
(
initialize_mode
,
p
.
data
.
shape
(),
p
.
data
.
dtype
()
)
p
.
set_parameter_data
(
initialize_mode
,
p
.
data
.
shape
,
p
.
data
.
dtype
)
def
load_backbone_params
(
network
,
param_dict
):
def
load_backbone_params
(
network
,
param_dict
):
...
...
tests/st/gnn/aggregator.py
浏览文件 @
66bbdb4a
...
@@ -78,15 +78,15 @@ class GNNFeatureTransform(nn.Cell):
...
@@ -78,15 +78,15 @@ class GNNFeatureTransform(nn.Cell):
self
.
has_bias
=
check_bool
(
has_bias
)
self
.
has_bias
=
check_bool
(
has_bias
)
if
isinstance
(
weight_init
,
Tensor
):
if
isinstance
(
weight_init
,
Tensor
):
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
()
[
0
]
!=
out_channels
or
\
if
weight_init
.
dim
()
!=
2
or
weight_init
.
shape
[
0
]
!=
out_channels
or
\
weight_init
.
shape
()
[
1
]
!=
in_channels
:
weight_init
.
shape
[
1
]
!=
in_channels
:
raise
ValueError
(
"weight_init shape error"
)
raise
ValueError
(
"weight_init shape error"
)
self
.
weight
=
Parameter
(
initializer
(
weight_init
,
[
out_channels
,
in_channels
]),
name
=
"weight"
)
self
.
weight
=
Parameter
(
initializer
(
weight_init
,
[
out_channels
,
in_channels
]),
name
=
"weight"
)
if
self
.
has_bias
:
if
self
.
has_bias
:
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
out_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
out_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
bias_init
,
[
out_channels
]),
name
=
"bias"
)
self
.
bias
=
Parameter
(
initializer
(
bias_init
,
[
out_channels
]),
name
=
"bias"
)
...
...
tests/st/nccl/test_nccl_all_gather_op.py
浏览文件 @
66bbdb4a
...
@@ -51,4 +51,4 @@ def test_AllGather():
...
@@ -51,4 +51,4 @@ def test_AllGather():
diff
=
output
.
asnumpy
()
-
expect
diff
=
output
.
asnumpy
()
-
expect
error
=
np
.
ones
(
shape
=
expect
.
shape
)
*
1.0e-5
error
=
np
.
ones
(
shape
=
expect
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff
<
error
)
assert
np
.
all
(
diff
<
error
)
assert
output
.
shape
()
==
expect
.
shape
assert
output
.
shape
==
expect
.
shape
tests/st/nccl/test_nccl_all_reduce_op.py
浏览文件 @
66bbdb4a
...
@@ -62,19 +62,19 @@ def test_AllReduce():
...
@@ -62,19 +62,19 @@ def test_AllReduce():
diff0
=
output
[
0
].
asnumpy
()
-
expect0
diff0
=
output
[
0
].
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
expect0
expect1
=
expect0
diff1
=
output
[
1
].
asnumpy
()
-
expect1
diff1
=
output
[
1
].
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
expect1
expect2
=
expect1
diff2
=
output
[
2
].
asnumpy
()
-
expect2
diff2
=
output
[
2
].
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
class
Net2
(
nn
.
Cell
):
class
Net2
(
nn
.
Cell
):
...
@@ -108,16 +108,16 @@ def test_AllReduce2():
...
@@ -108,16 +108,16 @@ def test_AllReduce2():
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
expect0
*
size
expect1
=
expect0
*
size
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
expect1
*
size
expect2
=
expect1
*
size
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
tests/st/nccl/test_nccl_reduce_scatter_op.py
浏览文件 @
66bbdb4a
...
@@ -61,16 +61,16 @@ def test_ReduceScatter():
...
@@ -61,16 +61,16 @@ def test_ReduceScatter():
diff0
=
output
[
0
].
asnumpy
()
-
expect0
diff0
=
output
[
0
].
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
ones
([
1
,
1
,
3
,
3
]).
astype
(
np
.
float32
)
*
0.01
*
size
expect1
=
np
.
ones
([
1
,
1
,
3
,
3
]).
astype
(
np
.
float32
)
*
0.01
*
size
diff1
=
output
[
1
].
asnumpy
()
-
expect1
diff1
=
output
[
1
].
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
ones
([
1
,
1
,
3
,
3
]).
astype
(
np
.
float32
)
*
0.01
*
1
expect2
=
np
.
ones
([
1
,
1
,
3
,
3
]).
astype
(
np
.
float32
)
*
0.01
*
1
diff2
=
output
[
2
].
asnumpy
()
-
expect2
diff2
=
output
[
2
].
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
tests/st/networks/models/bert/src/fused_layer_norm.py
浏览文件 @
66bbdb4a
...
@@ -73,7 +73,7 @@ class FusedLayerNorm(Cell):
...
@@ -73,7 +73,7 @@ class FusedLayerNorm(Cell):
Examples:
Examples:
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> shape1 = x.shape
()
[1:]
>>> shape1 = x.shape[1:]
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m(x)
>>> m(x)
"""
"""
...
...
tests/st/ops/ascend/test_autocast.py
浏览文件 @
66bbdb4a
...
@@ -75,93 +75,93 @@ def test_tensor_auto_cast():
...
@@ -75,93 +75,93 @@ def test_tensor_auto_cast():
t_fp64
=
Tensor
(
np
.
ones
([
2
,
1
,
2
,
2
]),
mstype
.
float64
)
t_fp64
=
Tensor
(
np
.
ones
([
2
,
1
,
2
,
2
]),
mstype
.
float64
)
net
=
TensorAutoCast
()
net
=
TensorAutoCast
()
rs
=
net
(
t_uint8
,
t_int8
)
rs
=
net
(
t_uint8
,
t_int8
)
assert
rs
.
dtype
()
==
mstype
.
int16
assert
rs
.
dtype
==
mstype
.
int16
rs
=
net
(
t_uint8
,
t_int16
)
rs
=
net
(
t_uint8
,
t_int16
)
assert
rs
.
dtype
()
==
mstype
.
int16
assert
rs
.
dtype
==
mstype
.
int16
rs
=
net
(
t_uint8
,
t_int32
)
rs
=
net
(
t_uint8
,
t_int32
)
assert
rs
.
dtype
()
==
mstype
.
int32
assert
rs
.
dtype
==
mstype
.
int32
rs
=
net
(
t_uint8
,
t_int64
)
rs
=
net
(
t_uint8
,
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
int64
assert
rs
.
dtype
==
mstype
.
int64
rs
=
net
(
t_int8
,
t_int16
)
rs
=
net
(
t_int8
,
t_int16
)
assert
rs
.
dtype
()
==
mstype
.
int16
assert
rs
.
dtype
==
mstype
.
int16
rs
=
net
(
t_int8
,
t_int32
)
rs
=
net
(
t_int8
,
t_int32
)
assert
rs
.
dtype
()
==
mstype
.
int32
assert
rs
.
dtype
==
mstype
.
int32
rs
=
net
(
t_int8
,
t_int64
)
rs
=
net
(
t_int8
,
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
int64
assert
rs
.
dtype
==
mstype
.
int64
rs
=
net
(
t_int16
,
t_int32
)
rs
=
net
(
t_int16
,
t_int32
)
assert
rs
.
dtype
()
==
mstype
.
int32
assert
rs
.
dtype
==
mstype
.
int32
rs
=
net
(
t_int16
,
t_int64
)
rs
=
net
(
t_int16
,
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
int64
assert
rs
.
dtype
==
mstype
.
int64
rs
=
net
(
t_int32
,
t_int64
)
rs
=
net
(
t_int32
,
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
int64
assert
rs
.
dtype
==
mstype
.
int64
rs
=
net
(
t_fp16
,
t_fp32
)
rs
=
net
(
t_fp16
,
t_fp32
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
net
(
t_fp16
,
t_fp64
)
rs
=
net
(
t_fp16
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_fp32
,
t_fp64
)
rs
=
net
(
t_fp32
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_uint8
,
t_fp16
)
rs
=
net
(
t_uint8
,
t_fp16
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
rs
=
net
(
t_uint8
,
t_fp32
)
rs
=
net
(
t_uint8
,
t_fp32
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
net
(
t_uint8
,
t_fp64
)
rs
=
net
(
t_uint8
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_int8
,
t_fp64
)
rs
=
net
(
t_int8
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_int16
,
t_fp64
)
rs
=
net
(
t_int16
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_int32
,
t_fp64
)
rs
=
net
(
t_int32
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_int64
,
t_fp64
)
rs
=
net
(
t_int64
,
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
rs
=
net
(
t_fp16
,
t_int8
)
rs
=
net
(
t_fp16
,
t_int8
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
rs
=
net
(
t_fp16
,
t_uint8
)
rs
=
net
(
t_fp16
,
t_uint8
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
rs
=
net
(
t_fp16
,
t_int16
)
rs
=
net
(
t_fp16
,
t_int16
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
rs
=
net
(
t_fp16
,
t_int32
)
rs
=
net
(
t_fp16
,
t_int32
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
rs
=
net
(
t_fp16
,
t_int64
)
rs
=
net
(
t_fp16
,
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
tint
=
TensorIntAutoCast
()
tint
=
TensorIntAutoCast
()
rs
=
tint
(
t_uint8
)
rs
=
tint
(
t_uint8
)
assert
rs
.
dtype
()
==
mstype
.
uint8
assert
rs
.
dtype
==
mstype
.
uint8
rs
=
tint
(
t_int8
)
rs
=
tint
(
t_int8
)
assert
rs
.
dtype
()
==
mstype
.
int8
assert
rs
.
dtype
==
mstype
.
int8
rs
=
tint
(
t_int16
)
rs
=
tint
(
t_int16
)
assert
rs
.
dtype
()
==
mstype
.
int16
assert
rs
.
dtype
==
mstype
.
int16
rs
=
tint
(
t_int32
)
rs
=
tint
(
t_int32
)
assert
rs
.
dtype
()
==
mstype
.
int32
assert
rs
.
dtype
==
mstype
.
int32
rs
=
tint
(
t_int64
)
rs
=
tint
(
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
int64
assert
rs
.
dtype
==
mstype
.
int64
rs
=
tint
(
t_fp16
)
rs
=
tint
(
t_fp16
)
assert
rs
.
dtype
()
==
mstype
.
float16
assert
rs
.
dtype
==
mstype
.
float16
rs
=
tint
(
t_fp32
)
rs
=
tint
(
t_fp32
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tint
(
t_fp64
)
rs
=
tint
(
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
tfp
=
TensorFPAutoCast
()
tfp
=
TensorFPAutoCast
()
rs
=
tfp
(
t_uint8
)
rs
=
tfp
(
t_uint8
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_int8
)
rs
=
tfp
(
t_int8
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_int16
)
rs
=
tfp
(
t_int16
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_int32
)
rs
=
tfp
(
t_int32
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_int64
)
rs
=
tfp
(
t_int64
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_fp16
)
rs
=
tfp
(
t_fp16
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_fp32
)
rs
=
tfp
(
t_fp32
)
assert
rs
.
dtype
()
==
mstype
.
float32
assert
rs
.
dtype
==
mstype
.
float32
rs
=
tfp
(
t_fp64
)
rs
=
tfp
(
t_fp64
)
assert
rs
.
dtype
()
==
mstype
.
float64
assert
rs
.
dtype
==
mstype
.
float64
t_uint16
=
Tensor
(
np
.
ones
([
2
,
1
,
2
,
2
]),
mstype
.
uint16
)
t_uint16
=
Tensor
(
np
.
ones
([
2
,
1
,
2
,
2
]),
mstype
.
uint16
)
t_uint32
=
Tensor
(
np
.
ones
([
2
,
1
,
2
,
2
]),
mstype
.
uint32
)
t_uint32
=
Tensor
(
np
.
ones
([
2
,
1
,
2
,
2
]),
mstype
.
uint32
)
...
...
tests/st/ops/ascend/test_tbe_ops/test_bias_add.py
浏览文件 @
66bbdb4a
...
@@ -35,7 +35,7 @@ class Net(nn.Cell):
...
@@ -35,7 +35,7 @@ class Net(nn.Cell):
self
.
biasAdd
=
P
.
BiasAdd
()
self
.
biasAdd
=
P
.
BiasAdd
()
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
output_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
output_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
self
.
bias
=
Parameter
(
initializer
(
...
...
tests/st/ops/ascend/test_tdt_data_ms.py
浏览文件 @
66bbdb4a
...
@@ -64,7 +64,7 @@ def convert_type(shapes, types):
...
@@ -64,7 +64,7 @@ def convert_type(shapes, types):
for
np_shape
,
np_type
in
zip
(
shapes
,
types
):
for
np_shape
,
np_type
in
zip
(
shapes
,
types
):
input_np
=
np
.
zeros
(
np_shape
,
np_type
)
input_np
=
np
.
zeros
(
np_shape
,
np_type
)
tensor
=
Tensor
(
input_np
)
tensor
=
Tensor
(
input_np
)
ms_types
.
append
(
tensor
.
dtype
()
)
ms_types
.
append
(
tensor
.
dtype
)
return
ms_types
return
ms_types
...
...
tests/st/ops/cpu/test_argmax_op.py
浏览文件 @
66bbdb4a
...
@@ -34,7 +34,7 @@ class NetArgmax(nn.Cell):
...
@@ -34,7 +34,7 @@ class NetArgmax(nn.Cell):
x
=
Tensor
(
np
.
array
([[
1.
,
20.
,
5.
],
x
=
Tensor
(
np
.
array
([[
1.
,
20.
,
5.
],
[
67.
,
8.
,
9.
],
[
67.
,
8.
,
9.
],
[
130.
,
24.
,
15.
]]).
astype
(
np
.
float32
))
[
130.
,
24.
,
15.
]]).
astype
(
np
.
float32
))
self
.
x
=
Parameter
(
initializer
(
x
,
x
.
shape
()
),
name
=
'x'
)
self
.
x
=
Parameter
(
initializer
(
x
,
x
.
shape
),
name
=
'x'
)
def
construct
(
self
):
def
construct
(
self
):
return
self
.
argmax
(
self
.
x
)
return
self
.
argmax
(
self
.
x
)
...
...
tests/st/ops/cpu/test_equalcount_op.py
浏览文件 @
66bbdb4a
...
@@ -32,8 +32,8 @@ class NetEqualCount(nn.Cell):
...
@@ -32,8 +32,8 @@ class NetEqualCount(nn.Cell):
self
.
equalcount
=
P
.
EqualCount
()
self
.
equalcount
=
P
.
EqualCount
()
x
=
Tensor
(
np
.
array
([
1
,
20
,
5
]).
astype
(
np
.
int32
))
x
=
Tensor
(
np
.
array
([
1
,
20
,
5
]).
astype
(
np
.
int32
))
y
=
Tensor
(
np
.
array
([
2
,
20
,
5
]).
astype
(
np
.
int32
))
y
=
Tensor
(
np
.
array
([
2
,
20
,
5
]).
astype
(
np
.
int32
))
self
.
x
=
Parameter
(
initializer
(
x
,
x
.
shape
()
),
name
=
'x'
)
self
.
x
=
Parameter
(
initializer
(
x
,
x
.
shape
),
name
=
'x'
)
self
.
y
=
Parameter
(
initializer
(
y
,
y
.
shape
()
),
name
=
'y'
)
self
.
y
=
Parameter
(
initializer
(
y
,
y
.
shape
),
name
=
'y'
)
def
construct
(
self
):
def
construct
(
self
):
return
self
.
equalcount
(
self
.
x
,
self
.
y
)
return
self
.
equalcount
(
self
.
x
,
self
.
y
)
...
...
tests/st/ops/cpu/test_softmax_op.py
浏览文件 @
66bbdb4a
...
@@ -33,7 +33,7 @@ class NetSoftmax(nn.Cell):
...
@@ -33,7 +33,7 @@ class NetSoftmax(nn.Cell):
x
=
Tensor
(
np
.
array
([[
0.1
,
0.3
,
0.6
],
x
=
Tensor
(
np
.
array
([[
0.1
,
0.3
,
0.6
],
[
0.2
,
-
0.6
,
0.8
],
[
0.2
,
-
0.6
,
0.8
],
[
0.6
,
1
,
0.4
]]).
astype
(
np
.
float32
))
[
0.6
,
1
,
0.4
]]).
astype
(
np
.
float32
))
self
.
x
=
Parameter
(
initializer
(
x
,
x
.
shape
()
),
name
=
'x'
)
self
.
x
=
Parameter
(
initializer
(
x
,
x
.
shape
),
name
=
'x'
)
def
construct
(
self
):
def
construct
(
self
):
return
self
.
softmax
(
self
.
x
)
return
self
.
softmax
(
self
.
x
)
...
...
tests/st/ops/cpu/test_softmax_with_cross_entropy_op.py
浏览文件 @
66bbdb4a
...
@@ -32,9 +32,9 @@ class NetSoftmaxWithCrossEntropy(nn.Cell):
...
@@ -32,9 +32,9 @@ class NetSoftmaxWithCrossEntropy(nn.Cell):
logits
=
Tensor
(
np
.
array
([[
1
,
1
,
10
],
logits
=
Tensor
(
np
.
array
([[
1
,
1
,
10
],
[
1
,
10
,
1
],
[
1
,
10
,
1
],
[
10
,
1
,
1
]]).
astype
(
np
.
float32
))
[
10
,
1
,
1
]]).
astype
(
np
.
float32
))
self
.
logits
=
Parameter
(
initializer
(
logits
,
logits
.
shape
()
),
name
=
'logits'
)
self
.
logits
=
Parameter
(
initializer
(
logits
,
logits
.
shape
),
name
=
'logits'
)
labels
=
Tensor
(
np
.
array
([
2
,
1
,
0
]).
astype
(
np
.
int32
))
labels
=
Tensor
(
np
.
array
([
2
,
1
,
0
]).
astype
(
np
.
int32
))
self
.
labels
=
Parameter
(
initializer
(
labels
,
labels
.
shape
()
),
name
=
'labels'
)
self
.
labels
=
Parameter
(
initializer
(
labels
,
labels
.
shape
),
name
=
'labels'
)
self
.
SoftmaxWithCrossEntropy
=
P
.
SparseSoftmaxCrossEntropyWithLogits
(
True
)
self
.
SoftmaxWithCrossEntropy
=
P
.
SparseSoftmaxCrossEntropyWithLogits
(
True
)
def
construct
(
self
):
def
construct
(
self
):
...
...
tests/st/ops/gpu/test_correction_mul_op.py
浏览文件 @
66bbdb4a
...
@@ -50,4 +50,4 @@ def test_correction_mul():
...
@@ -50,4 +50,4 @@ def test_correction_mul():
diff
=
output
.
asnumpy
()
-
expect
diff
=
output
.
asnumpy
()
-
expect
assert
np
.
all
(
diff
<
error
)
assert
np
.
all
(
diff
<
error
)
assert
np
.
all
(
diff
>
error
*
-
1
)
assert
np
.
all
(
diff
>
error
*
-
1
)
assert
output
.
shape
()
==
expect
.
shape
assert
output
.
shape
==
expect
.
shape
tests/st/ops/gpu/test_equal_op.py
浏览文件 @
66bbdb4a
...
@@ -65,19 +65,19 @@ def test_equal():
...
@@ -65,19 +65,19 @@ def test_equal():
equal
=
NetEqual
()
equal
=
NetEqual
()
output0
=
equal
(
x0
,
y0
)
output0
=
equal
(
x0
,
y0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
equal
(
x1
,
y1
)
output1
=
equal
(
x1
,
y1
)
assert
np
.
all
(
output1
.
asnumpy
()
==
expect1
)
assert
np
.
all
(
output1
.
asnumpy
()
==
expect1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
equal
=
NetEqual
()
equal
=
NetEqual
()
output0
=
equal
(
x0
,
y0
)
output0
=
equal
(
x0
,
y0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
equal
(
x1
,
y1
)
output1
=
equal
(
x1
,
y1
)
assert
np
.
all
(
output1
.
asnumpy
()
==
expect1
)
assert
np
.
all
(
output1
.
asnumpy
()
==
expect1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
level0
...
@@ -92,13 +92,13 @@ def test_notequal():
...
@@ -92,13 +92,13 @@ def test_notequal():
notequal
=
NetNotEqual
()
notequal
=
NetNotEqual
()
output0
=
notequal
(
x0
,
y0
)
output0
=
notequal
(
x0
,
y0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
notequal
=
NetNotEqual
()
notequal
=
NetNotEqual
()
output0
=
notequal
(
x0
,
y0
)
output0
=
notequal
(
x0
,
y0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
level0
...
@@ -113,10 +113,10 @@ def test_greaterqual():
...
@@ -113,10 +113,10 @@ def test_greaterqual():
gequal
=
NetGreaterEqual
()
gequal
=
NetGreaterEqual
()
output0
=
gequal
(
x0
,
y0
)
output0
=
gequal
(
x0
,
y0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
gequal
=
NetGreaterEqual
()
gequal
=
NetGreaterEqual
()
output0
=
gequal
(
x0
,
y0
)
output0
=
gequal
(
x0
,
y0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
np
.
all
(
output0
.
asnumpy
()
==
expect0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
tests/st/ops/gpu/test_exp_op.py
浏览文件 @
66bbdb4a
...
@@ -49,19 +49,19 @@ def test_exp():
...
@@ -49,19 +49,19 @@ def test_exp():
output0
=
exp
(
x0
)
output0
=
exp
(
x0
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
exp
(
x1
)
output1
=
exp
(
x1
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
"GPU"
)
exp
=
NetExp
()
exp
=
NetExp
()
output0
=
exp
(
x0
)
output0
=
exp
(
x0
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
exp
(
x1
)
output1
=
exp
(
x1
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
tests/st/ops/gpu/test_log_op.py
浏览文件 @
66bbdb4a
...
@@ -50,10 +50,10 @@ def test_log():
...
@@ -50,10 +50,10 @@ def test_log():
output1
=
log
(
x1
)
output1
=
log
(
x1
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
log
=
NetLog
()
log
=
NetLog
()
...
@@ -61,7 +61,7 @@ def test_log():
...
@@ -61,7 +61,7 @@ def test_log():
output1
=
log
(
x1
)
output1
=
log
(
x1
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
tests/st/ops/gpu/test_mul_op.py
浏览文件 @
66bbdb4a
...
@@ -64,35 +64,35 @@ def test_mul():
...
@@ -64,35 +64,35 @@ def test_mul():
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
mul
(
x1
,
y1
)
output1
=
mul
(
x1
,
y1
)
expect1
=
np
.
multiply
(
x1_np
,
y1_np
)
expect1
=
np
.
multiply
(
x1_np
,
y1_np
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
output2
=
mul
(
x2
,
y2
)
output2
=
mul
(
x2
,
y2
)
expect2
=
np
.
multiply
(
x2_np
,
y2_np
)
expect2
=
np
.
multiply
(
x2_np
,
y2_np
)
diff2
=
output2
.
asnumpy
()
-
expect2
diff2
=
output2
.
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output2
.
shape
()
==
expect2
.
shape
assert
output2
.
shape
==
expect2
.
shape
output3
=
mul
(
x3
,
y3
)
output3
=
mul
(
x3
,
y3
)
expect3
=
np
.
multiply
(
x3_np
,
y3_np
)
expect3
=
np
.
multiply
(
x3_np
,
y3_np
)
diff3
=
output3
.
asnumpy
()
-
expect3
diff3
=
output3
.
asnumpy
()
-
expect3
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output3
.
shape
()
==
expect3
.
shape
assert
output3
.
shape
==
expect3
.
shape
output4
=
mul
(
x4
,
y4
)
output4
=
mul
(
x4
,
y4
)
expect4
=
np
.
multiply
(
x4_np
,
y4_np
)
expect4
=
np
.
multiply
(
x4_np
,
y4_np
)
diff4
=
output4
.
asnumpy
()
-
expect4
diff4
=
output4
.
asnumpy
()
-
expect4
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output4
.
shape
()
==
expect4
.
shape
assert
output4
.
shape
==
expect4
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
mul
=
NetMul
()
mul
=
NetMul
()
...
@@ -101,32 +101,32 @@ def test_mul():
...
@@ -101,32 +101,32 @@ def test_mul():
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
mul
(
x1
,
y1
)
output1
=
mul
(
x1
,
y1
)
expect1
=
np
.
multiply
(
x1_np
,
y1_np
)
expect1
=
np
.
multiply
(
x1_np
,
y1_np
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
output2
=
mul
(
x2
,
y2
)
output2
=
mul
(
x2
,
y2
)
expect2
=
np
.
multiply
(
x2_np
,
y2_np
)
expect2
=
np
.
multiply
(
x2_np
,
y2_np
)
diff2
=
output2
.
asnumpy
()
-
expect2
diff2
=
output2
.
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output2
.
shape
()
==
expect2
.
shape
assert
output2
.
shape
==
expect2
.
shape
output3
=
mul
(
x3
,
y3
)
output3
=
mul
(
x3
,
y3
)
expect3
=
np
.
multiply
(
x3_np
,
y3_np
)
expect3
=
np
.
multiply
(
x3_np
,
y3_np
)
diff3
=
output3
.
asnumpy
()
-
expect3
diff3
=
output3
.
asnumpy
()
-
expect3
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output3
.
shape
()
==
expect3
.
shape
assert
output3
.
shape
==
expect3
.
shape
output4
=
mul
(
x4
,
y4
)
output4
=
mul
(
x4
,
y4
)
expect4
=
np
.
multiply
(
x4_np
,
y4_np
)
expect4
=
np
.
multiply
(
x4_np
,
y4_np
)
diff4
=
output4
.
asnumpy
()
-
expect4
diff4
=
output4
.
asnumpy
()
-
expect4
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output4
.
shape
()
==
expect4
.
shape
assert
output4
.
shape
==
expect4
.
shape
tests/st/ops/gpu/test_neg_op.py
浏览文件 @
66bbdb4a
...
@@ -49,19 +49,19 @@ def test_neg():
...
@@ -49,19 +49,19 @@ def test_neg():
output0
=
neg
(
x0
)
output0
=
neg
(
x0
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
neg
(
x1
)
output1
=
neg
(
x1
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
neg
=
NetNeg
()
neg
=
NetNeg
()
output0
=
neg
(
x0
)
output0
=
neg
(
x0
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
neg
(
x1
)
output1
=
neg
(
x1
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
tests/st/ops/gpu/test_realdiv_op.py
浏览文件 @
66bbdb4a
...
@@ -64,35 +64,35 @@ def test_real_div():
...
@@ -64,35 +64,35 @@ def test_real_div():
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
real_div
(
x1
,
y1
)
output1
=
real_div
(
x1
,
y1
)
expect1
=
np
.
divide
(
x1_np
,
y1_np
)
expect1
=
np
.
divide
(
x1_np
,
y1_np
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
output2
=
real_div
(
x2
,
y2
)
output2
=
real_div
(
x2
,
y2
)
expect2
=
np
.
divide
(
x2_np
,
y2_np
)
expect2
=
np
.
divide
(
x2_np
,
y2_np
)
diff2
=
output2
.
asnumpy
()
-
expect2
diff2
=
output2
.
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output2
.
shape
()
==
expect2
.
shape
assert
output2
.
shape
==
expect2
.
shape
output3
=
real_div
(
x3
,
y3
)
output3
=
real_div
(
x3
,
y3
)
expect3
=
np
.
divide
(
x3_np
,
y3_np
)
expect3
=
np
.
divide
(
x3_np
,
y3_np
)
diff3
=
output3
.
asnumpy
()
-
expect3
diff3
=
output3
.
asnumpy
()
-
expect3
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output3
.
shape
()
==
expect3
.
shape
assert
output3
.
shape
==
expect3
.
shape
output4
=
real_div
(
x4
,
y4
)
output4
=
real_div
(
x4
,
y4
)
expect4
=
np
.
divide
(
x4_np
,
y4_np
)
expect4
=
np
.
divide
(
x4_np
,
y4_np
)
diff4
=
output4
.
asnumpy
()
-
expect4
diff4
=
output4
.
asnumpy
()
-
expect4
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output4
.
shape
()
==
expect4
.
shape
assert
output4
.
shape
==
expect4
.
shape
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
'GPU'
)
context
.
set_context
(
mode
=
context
.
PYNATIVE_MODE
,
device_target
=
'GPU'
)
real_div
=
NetRealDiv
()
real_div
=
NetRealDiv
()
...
@@ -101,32 +101,32 @@ def test_real_div():
...
@@ -101,32 +101,32 @@ def test_real_div():
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
real_div
(
x1
,
y1
)
output1
=
real_div
(
x1
,
y1
)
expect1
=
np
.
divide
(
x1_np
,
y1_np
)
expect1
=
np
.
divide
(
x1_np
,
y1_np
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
output2
=
real_div
(
x2
,
y2
)
output2
=
real_div
(
x2
,
y2
)
expect2
=
np
.
divide
(
x2_np
,
y2_np
)
expect2
=
np
.
divide
(
x2_np
,
y2_np
)
diff2
=
output2
.
asnumpy
()
-
expect2
diff2
=
output2
.
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output2
.
shape
()
==
expect2
.
shape
assert
output2
.
shape
==
expect2
.
shape
output3
=
real_div
(
x3
,
y3
)
output3
=
real_div
(
x3
,
y3
)
expect3
=
np
.
divide
(
x3_np
,
y3_np
)
expect3
=
np
.
divide
(
x3_np
,
y3_np
)
diff3
=
output3
.
asnumpy
()
-
expect3
diff3
=
output3
.
asnumpy
()
-
expect3
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output3
.
shape
()
==
expect3
.
shape
assert
output3
.
shape
==
expect3
.
shape
output4
=
real_div
(
x4
,
y4
)
output4
=
real_div
(
x4
,
y4
)
expect4
=
np
.
divide
(
x4_np
,
y4_np
)
expect4
=
np
.
divide
(
x4_np
,
y4_np
)
diff4
=
output4
.
asnumpy
()
-
expect4
diff4
=
output4
.
asnumpy
()
-
expect4
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output4
.
shape
()
==
expect4
.
shape
assert
output4
.
shape
==
expect4
.
shape
tests/st/ops/gpu/test_reciprocal_op.py
浏览文件 @
66bbdb4a
...
@@ -49,19 +49,19 @@ def test_Reciprocal():
...
@@ -49,19 +49,19 @@ def test_Reciprocal():
output0
=
reciprocal
(
x0
)
output0
=
reciprocal
(
x0
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
reciprocal
(
x1
)
output1
=
reciprocal
(
x1
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
reciprocal
=
NetReciprocal
()
reciprocal
=
NetReciprocal
()
output0
=
reciprocal
(
x0
)
output0
=
reciprocal
(
x0
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
reciprocal
(
x1
)
output1
=
reciprocal
(
x1
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
tests/st/ops/gpu/test_reduce_max_op.py
浏览文件 @
66bbdb4a
...
@@ -128,43 +128,43 @@ def test_ReduceMax():
...
@@ -128,43 +128,43 @@ def test_ReduceMax():
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
max
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
expect1
=
np
.
max
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
max
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
expect2
=
np
.
max
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
expect3
=
np
.
max
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
expect3
=
np
.
max
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output
[
3
].
shape
()
==
expect3
.
shape
assert
output
[
3
].
shape
==
expect3
.
shape
expect4
=
np
.
max
(
x4
,
axis
=
np_axis4
,
keepdims
=
keep_dims4
)
expect4
=
np
.
max
(
x4
,
axis
=
np_axis4
,
keepdims
=
keep_dims4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output
[
4
].
shape
()
==
expect4
.
shape
assert
output
[
4
].
shape
==
expect4
.
shape
expect5
=
np
.
max
(
x5
,
axis
=
np_axis5
,
keepdims
=
keep_dims5
)
expect5
=
np
.
max
(
x5
,
axis
=
np_axis5
,
keepdims
=
keep_dims5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff5
<
error5
)
assert
np
.
all
(
diff5
<
error5
)
assert
output
[
5
].
shape
()
==
expect5
.
shape
assert
output
[
5
].
shape
==
expect5
.
shape
expect6
=
np
.
max
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
expect6
=
np
.
max
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff6
<
error6
)
assert
np
.
all
(
diff6
<
error6
)
assert
output
[
6
].
shape
()
==
expect6
.
shape
assert
output
[
6
].
shape
==
expect6
.
shape
expect7
=
np
.
max
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
expect7
=
np
.
max
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
...
...
tests/st/ops/gpu/test_reduce_mean_op.py
浏览文件 @
66bbdb4a
...
@@ -180,88 +180,88 @@ def test_ReduceMean():
...
@@ -180,88 +180,88 @@ def test_ReduceMean():
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
mean
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
expect1
=
np
.
mean
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
mean
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
expect2
=
np
.
mean
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
expect3
=
np
.
mean
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
expect3
=
np
.
mean
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output
[
3
].
shape
()
==
expect3
.
shape
assert
output
[
3
].
shape
==
expect3
.
shape
expect4
=
np
.
mean
(
x4
,
axis
=
axis4
,
keepdims
=
keep_dims4
)
expect4
=
np
.
mean
(
x4
,
axis
=
axis4
,
keepdims
=
keep_dims4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output
[
4
].
shape
()
==
expect4
.
shape
assert
output
[
4
].
shape
==
expect4
.
shape
expect5
=
np
.
mean
(
x5
,
axis
=
axis5
,
keepdims
=
keep_dims5
)
expect5
=
np
.
mean
(
x5
,
axis
=
axis5
,
keepdims
=
keep_dims5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff5
<
error5
)
assert
np
.
all
(
diff5
<
error5
)
assert
output
[
5
].
shape
()
==
expect5
.
shape
assert
output
[
5
].
shape
==
expect5
.
shape
expect6
=
np
.
mean
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
expect6
=
np
.
mean
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff6
<
error6
)
assert
np
.
all
(
diff6
<
error6
)
assert
output
[
6
].
shape
()
==
expect6
.
shape
assert
output
[
6
].
shape
==
expect6
.
shape
expect7
=
np
.
mean
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
expect7
=
np
.
mean
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
error7
=
np
.
ones
(
shape
=
expect7
.
shape
)
*
1.0e-5
error7
=
np
.
ones
(
shape
=
expect7
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff7
<
error7
)
assert
np
.
all
(
diff7
<
error7
)
assert
output
[
7
].
shape
()
==
expect7
.
shape
assert
output
[
7
].
shape
==
expect7
.
shape
expect8
=
np
.
mean
(
x8
,
axis
=
axis8
,
keepdims
=
keep_dims8
)
expect8
=
np
.
mean
(
x8
,
axis
=
axis8
,
keepdims
=
keep_dims8
)
diff8
=
abs
(
output
[
8
].
asnumpy
()
-
expect8
)
diff8
=
abs
(
output
[
8
].
asnumpy
()
-
expect8
)
error8
=
np
.
ones
(
shape
=
expect8
.
shape
)
*
1.0e-5
error8
=
np
.
ones
(
shape
=
expect8
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff8
<
error8
)
assert
np
.
all
(
diff8
<
error8
)
assert
output
[
8
].
shape
()
==
expect8
.
shape
assert
output
[
8
].
shape
==
expect8
.
shape
expect9
=
np
.
mean
(
x9
,
axis
=
axis9
,
keepdims
=
keep_dims9
)
expect9
=
np
.
mean
(
x9
,
axis
=
axis9
,
keepdims
=
keep_dims9
)
diff9
=
abs
(
output
[
9
].
asnumpy
()
-
expect9
)
diff9
=
abs
(
output
[
9
].
asnumpy
()
-
expect9
)
error9
=
np
.
ones
(
shape
=
expect9
.
shape
)
*
1.0e-5
error9
=
np
.
ones
(
shape
=
expect9
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff9
<
error9
)
assert
np
.
all
(
diff9
<
error9
)
assert
output
[
9
].
shape
()
==
expect9
.
shape
assert
output
[
9
].
shape
==
expect9
.
shape
expect10
=
np
.
mean
(
x10
,
axis
=
axis10
,
keepdims
=
keep_dims10
)
expect10
=
np
.
mean
(
x10
,
axis
=
axis10
,
keepdims
=
keep_dims10
)
diff10
=
abs
(
output
[
10
].
asnumpy
()
-
expect10
)
diff10
=
abs
(
output
[
10
].
asnumpy
()
-
expect10
)
error10
=
np
.
ones
(
shape
=
expect10
.
shape
)
*
1.0e-5
error10
=
np
.
ones
(
shape
=
expect10
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff10
<
error10
)
assert
np
.
all
(
diff10
<
error10
)
assert
output
[
10
].
shape
()
==
expect10
.
shape
assert
output
[
10
].
shape
==
expect10
.
shape
expect11
=
np
.
mean
(
x11
,
axis
=
axis11
,
keepdims
=
keep_dims11
)
expect11
=
np
.
mean
(
x11
,
axis
=
axis11
,
keepdims
=
keep_dims11
)
diff11
=
abs
(
output
[
11
].
asnumpy
()
-
expect11
)
diff11
=
abs
(
output
[
11
].
asnumpy
()
-
expect11
)
error11
=
np
.
ones
(
shape
=
expect11
.
shape
)
*
1.0e-5
error11
=
np
.
ones
(
shape
=
expect11
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff11
<
error11
)
assert
np
.
all
(
diff11
<
error11
)
assert
output
[
11
].
shape
()
==
expect11
.
shape
assert
output
[
11
].
shape
==
expect11
.
shape
expect12
=
np
.
mean
(
x12
,
axis
=
axis12
,
keepdims
=
keep_dims12
)
expect12
=
np
.
mean
(
x12
,
axis
=
axis12
,
keepdims
=
keep_dims12
)
diff12
=
abs
(
output
[
12
].
asnumpy
()
-
expect12
)
diff12
=
abs
(
output
[
12
].
asnumpy
()
-
expect12
)
error12
=
np
.
ones
(
shape
=
expect12
.
shape
)
*
1.0e-5
error12
=
np
.
ones
(
shape
=
expect12
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff12
<
error12
)
assert
np
.
all
(
diff12
<
error12
)
assert
output
[
12
].
shape
()
==
expect12
.
shape
assert
output
[
12
].
shape
==
expect12
.
shape
expect13
=
np
.
mean
(
x13
,
axis
=
axis13
,
keepdims
=
keep_dims13
)
expect13
=
np
.
mean
(
x13
,
axis
=
axis13
,
keepdims
=
keep_dims13
)
diff13
=
abs
(
output
[
13
].
asnumpy
()
-
expect13
)
diff13
=
abs
(
output
[
13
].
asnumpy
()
-
expect13
)
error13
=
np
.
ones
(
shape
=
expect13
.
shape
)
*
1.0e-5
error13
=
np
.
ones
(
shape
=
expect13
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff13
<
error13
)
assert
np
.
all
(
diff13
<
error13
)
assert
output
[
13
].
shape
()
==
expect13
.
shape
assert
output
[
13
].
shape
==
expect13
.
shape
expect14
=
np
.
mean
(
x14
,
axis
=
np_axis14
,
keepdims
=
keep_dims14
)
expect14
=
np
.
mean
(
x14
,
axis
=
np_axis14
,
keepdims
=
keep_dims14
)
diff14
=
abs
(
output
[
14
].
asnumpy
()
-
expect14
)
diff14
=
abs
(
output
[
14
].
asnumpy
()
-
expect14
)
error14
=
np
.
ones
(
shape
=
expect14
.
shape
)
*
1.0e-5
error14
=
np
.
ones
(
shape
=
expect14
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff14
<
error14
)
assert
np
.
all
(
diff14
<
error14
)
assert
output
[
14
].
shape
()
==
expect14
.
shape
assert
output
[
14
].
shape
==
expect14
.
shape
tests/st/ops/gpu/test_reduce_sum_op.py
浏览文件 @
66bbdb4a
...
@@ -182,88 +182,88 @@ def test_ReduceSum():
...
@@ -182,88 +182,88 @@ def test_ReduceSum():
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
sum
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
expect1
=
np
.
sum
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
sum
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
expect2
=
np
.
sum
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
expect3
=
np
.
sum
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
expect3
=
np
.
sum
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output
[
3
].
shape
()
==
expect3
.
shape
assert
output
[
3
].
shape
==
expect3
.
shape
expect4
=
np
.
sum
(
x4
,
axis
=
np_axis4
,
keepdims
=
keep_dims4
)
expect4
=
np
.
sum
(
x4
,
axis
=
np_axis4
,
keepdims
=
keep_dims4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output
[
4
].
shape
()
==
expect4
.
shape
assert
output
[
4
].
shape
==
expect4
.
shape
expect5
=
np
.
sum
(
x5
,
axis
=
np_axis5
,
keepdims
=
keep_dims5
)
expect5
=
np
.
sum
(
x5
,
axis
=
np_axis5
,
keepdims
=
keep_dims5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff5
<
error5
)
assert
np
.
all
(
diff5
<
error5
)
assert
output
[
5
].
shape
()
==
expect5
.
shape
assert
output
[
5
].
shape
==
expect5
.
shape
expect6
=
np
.
sum
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
expect6
=
np
.
sum
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff6
<
error6
)
assert
np
.
all
(
diff6
<
error6
)
assert
output
[
6
].
shape
()
==
expect6
.
shape
assert
output
[
6
].
shape
==
expect6
.
shape
expect7
=
np
.
sum
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
expect7
=
np
.
sum
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
error7
=
np
.
ones
(
shape
=
expect7
.
shape
)
*
1.0e-5
error7
=
np
.
ones
(
shape
=
expect7
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff7
<
error7
)
assert
np
.
all
(
diff7
<
error7
)
assert
output
[
7
].
shape
()
==
expect7
.
shape
assert
output
[
7
].
shape
==
expect7
.
shape
expect8
=
np
.
sum
(
x8
,
axis
=
axis8
,
keepdims
=
keep_dims8
)
expect8
=
np
.
sum
(
x8
,
axis
=
axis8
,
keepdims
=
keep_dims8
)
diff8
=
abs
(
output
[
8
].
asnumpy
()
-
expect8
)
diff8
=
abs
(
output
[
8
].
asnumpy
()
-
expect8
)
error8
=
np
.
ones
(
shape
=
expect8
.
shape
)
*
1.0e-5
error8
=
np
.
ones
(
shape
=
expect8
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff8
<
error8
)
assert
np
.
all
(
diff8
<
error8
)
assert
output
[
8
].
shape
()
==
expect8
.
shape
assert
output
[
8
].
shape
==
expect8
.
shape
expect9
=
np
.
sum
(
x9
,
axis
=
axis9
,
keepdims
=
keep_dims9
)
expect9
=
np
.
sum
(
x9
,
axis
=
axis9
,
keepdims
=
keep_dims9
)
diff9
=
abs
(
output
[
9
].
asnumpy
()
-
expect9
)
diff9
=
abs
(
output
[
9
].
asnumpy
()
-
expect9
)
error9
=
np
.
ones
(
shape
=
expect9
.
shape
)
*
1.0e-5
error9
=
np
.
ones
(
shape
=
expect9
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff9
<
error9
)
assert
np
.
all
(
diff9
<
error9
)
assert
output
[
9
].
shape
()
==
expect9
.
shape
assert
output
[
9
].
shape
==
expect9
.
shape
expect10
=
np
.
sum
(
x10
,
axis
=
axis10
,
keepdims
=
keep_dims10
)
expect10
=
np
.
sum
(
x10
,
axis
=
axis10
,
keepdims
=
keep_dims10
)
diff10
=
abs
(
output
[
10
].
asnumpy
()
-
expect10
)
diff10
=
abs
(
output
[
10
].
asnumpy
()
-
expect10
)
error10
=
np
.
ones
(
shape
=
expect10
.
shape
)
*
1.0e-5
error10
=
np
.
ones
(
shape
=
expect10
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff10
<
error10
)
assert
np
.
all
(
diff10
<
error10
)
assert
output
[
10
].
shape
()
==
expect10
.
shape
assert
output
[
10
].
shape
==
expect10
.
shape
expect11
=
np
.
sum
(
x11
,
axis
=
axis11
,
keepdims
=
keep_dims11
)
expect11
=
np
.
sum
(
x11
,
axis
=
axis11
,
keepdims
=
keep_dims11
)
diff11
=
abs
(
output
[
11
].
asnumpy
()
-
expect11
)
diff11
=
abs
(
output
[
11
].
asnumpy
()
-
expect11
)
error11
=
np
.
ones
(
shape
=
expect11
.
shape
)
*
1.0e-5
error11
=
np
.
ones
(
shape
=
expect11
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff11
<
error11
)
assert
np
.
all
(
diff11
<
error11
)
assert
output
[
11
].
shape
()
==
expect11
.
shape
assert
output
[
11
].
shape
==
expect11
.
shape
expect12
=
np
.
sum
(
x12
,
axis
=
axis12
,
keepdims
=
keep_dims12
)
expect12
=
np
.
sum
(
x12
,
axis
=
axis12
,
keepdims
=
keep_dims12
)
diff12
=
abs
(
output
[
12
].
asnumpy
()
-
expect12
)
diff12
=
abs
(
output
[
12
].
asnumpy
()
-
expect12
)
error12
=
np
.
ones
(
shape
=
expect12
.
shape
)
*
1.0e-5
error12
=
np
.
ones
(
shape
=
expect12
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff12
<
error12
)
assert
np
.
all
(
diff12
<
error12
)
assert
output
[
12
].
shape
()
==
expect12
.
shape
assert
output
[
12
].
shape
==
expect12
.
shape
expect13
=
np
.
sum
(
x13
,
axis
=
axis13
,
keepdims
=
keep_dims13
)
expect13
=
np
.
sum
(
x13
,
axis
=
axis13
,
keepdims
=
keep_dims13
)
diff13
=
abs
(
output
[
13
].
asnumpy
()
-
expect13
)
diff13
=
abs
(
output
[
13
].
asnumpy
()
-
expect13
)
error13
=
np
.
ones
(
shape
=
expect13
.
shape
)
*
1.0e-5
error13
=
np
.
ones
(
shape
=
expect13
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff13
<
error13
)
assert
np
.
all
(
diff13
<
error13
)
assert
output
[
13
].
shape
()
==
expect13
.
shape
assert
output
[
13
].
shape
==
expect13
.
shape
expect14
=
np
.
sum
(
x14
,
axis
=
np_axis14
,
keepdims
=
keep_dims14
)
expect14
=
np
.
sum
(
x14
,
axis
=
np_axis14
,
keepdims
=
keep_dims14
)
diff14
=
abs
(
output
[
14
].
asnumpy
()
-
expect14
)
diff14
=
abs
(
output
[
14
].
asnumpy
()
-
expect14
)
error14
=
np
.
ones
(
shape
=
expect14
.
shape
)
*
1.0e-5
error14
=
np
.
ones
(
shape
=
expect14
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff14
<
error14
)
assert
np
.
all
(
diff14
<
error14
)
assert
output
[
14
].
shape
()
==
expect14
.
shape
assert
output
[
14
].
shape
==
expect14
.
shape
tests/st/ops/gpu/test_sub_op.py
浏览文件 @
66bbdb4a
...
@@ -76,19 +76,19 @@ def test_Sub():
...
@@ -76,19 +76,19 @@ def test_Sub():
output4
=
sub
(
x4
,
y4
)
output4
=
sub
(
x4
,
y4
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
diff2
=
output2
.
asnumpy
()
-
expect2
diff2
=
output2
.
asnumpy
()
-
expect2
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output2
.
shape
()
==
expect2
.
shape
assert
output2
.
shape
==
expect2
.
shape
diff3
=
output3
.
asnumpy
()
-
expect3
diff3
=
output3
.
asnumpy
()
-
expect3
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output3
.
shape
()
==
expect3
.
shape
assert
output3
.
shape
==
expect3
.
shape
diff4
=
output4
.
asnumpy
()
-
expect4
diff4
=
output4
.
asnumpy
()
-
expect4
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output4
.
shape
()
==
expect4
.
shape
assert
output4
.
shape
==
expect4
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
sub
=
Net
()
sub
=
Net
()
...
@@ -99,16 +99,16 @@ def test_Sub():
...
@@ -99,16 +99,16 @@ def test_Sub():
output4
=
sub
(
x4
,
y4
)
output4
=
sub
(
x4
,
y4
)
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
diff2
=
output2
.
asnumpy
()
-
expect2
diff2
=
output2
.
asnumpy
()
-
expect2
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output2
.
shape
()
==
expect2
.
shape
assert
output2
.
shape
==
expect2
.
shape
diff3
=
output3
.
asnumpy
()
-
expect3
diff3
=
output3
.
asnumpy
()
-
expect3
assert
np
.
all
(
diff3
<
error3
)
assert
np
.
all
(
diff3
<
error3
)
assert
output3
.
shape
()
==
expect3
.
shape
assert
output3
.
shape
==
expect3
.
shape
diff4
=
output4
.
asnumpy
()
-
expect4
diff4
=
output4
.
asnumpy
()
-
expect4
assert
np
.
all
(
diff4
<
error4
)
assert
np
.
all
(
diff4
<
error4
)
assert
output4
.
shape
()
==
expect4
.
shape
assert
output4
.
shape
==
expect4
.
shape
tests/st/ops/gpu/test_tile_op.py
浏览文件 @
66bbdb4a
...
@@ -65,16 +65,16 @@ def test_tile():
...
@@ -65,16 +65,16 @@ def test_tile():
diff0
=
output
[
0
].
asnumpy
()
-
expect0
diff0
=
output
[
0
].
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
()
==
expect0
.
shape
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
tile
(
input_x1
,
mul1
)
expect1
=
np
.
tile
(
input_x1
,
mul1
)
diff1
=
output
[
1
].
asnumpy
()
-
expect1
diff1
=
output
[
1
].
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
()
==
expect1
.
shape
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
tile
(
input_x2
,
mul2
)
expect2
=
np
.
tile
(
input_x2
,
mul2
)
diff2
=
output
[
2
].
asnumpy
()
-
expect2
diff2
=
output
[
2
].
asnumpy
()
-
expect2
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
()
==
expect2
.
shape
assert
output
[
2
].
shape
==
expect2
.
shape
tests/st/ops/gpu/test_zeroslike_op.py
浏览文件 @
66bbdb4a
...
@@ -50,14 +50,14 @@ def test_ZerosLike():
...
@@ -50,14 +50,14 @@ def test_ZerosLike():
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
zeros_like
(
x1
)
output1
=
zeros_like
(
x1
)
expect1
=
np
.
zeros_like
(
x1_np
)
expect1
=
np
.
zeros_like
(
x1_np
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
zeros_like
=
NetZerosLike
()
zeros_like
=
NetZerosLike
()
...
@@ -66,11 +66,11 @@ def test_ZerosLike():
...
@@ -66,11 +66,11 @@ def test_ZerosLike():
diff0
=
output0
.
asnumpy
()
-
expect0
diff0
=
output0
.
asnumpy
()
-
expect0
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
np
.
all
(
diff0
<
error0
)
assert
output0
.
shape
()
==
expect0
.
shape
assert
output0
.
shape
==
expect0
.
shape
output1
=
zeros_like
(
x1
)
output1
=
zeros_like
(
x1
)
expect1
=
np
.
zeros_like
(
x1_np
)
expect1
=
np
.
zeros_like
(
x1_np
)
diff1
=
output1
.
asnumpy
()
-
expect1
diff1
=
output1
.
asnumpy
()
-
expect1
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
np
.
all
(
diff1
<
error1
)
assert
output1
.
shape
()
==
expect1
.
shape
assert
output1
.
shape
==
expect1
.
shape
tests/ut/python/dtype/test_list.py
浏览文件 @
66bbdb4a
...
@@ -20,6 +20,7 @@ import mindspore.nn as nn
...
@@ -20,6 +20,7 @@ import mindspore.nn as nn
import
mindspore.context
as
context
import
mindspore.context
as
context
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
from
mindspore.common
import
dtype
as
mstype
from
tests.ut.python.ut_filter
import
non_graph_engine
from
tests.ut.python.ut_filter
import
non_graph_engine
from
tests.mindspore_test_framework.mindspore_test
import
mindspore_test
from
tests.mindspore_test_framework.mindspore_test
import
mindspore_test
from
tests.mindspore_test_framework.pipeline.forward.compile_forward
\
from
tests.mindspore_test_framework.pipeline.forward.compile_forward
\
...
@@ -44,7 +45,12 @@ def test_list_equal():
...
@@ -44,7 +45,12 @@ def test_list_equal():
y
=
Tensor
(
np
.
zeros
([
3
,
4
,
5
],
np
.
int32
))
y
=
Tensor
(
np
.
zeros
([
3
,
4
,
5
],
np
.
int32
))
z
=
[
1
,
2
,
3
]
z
=
[
1
,
2
,
3
]
net
=
Net
(
z
)
net
=
Net
(
z
)
assert
net
(
x
,
y
)
==
x
ret
=
net
(
x
,
y
)
print
(
ret
.
asnumpy
())
assert
ret
==
x
assert
ret
.
dtype
==
mstype
.
int32
assert
ret
.
shape
==
(
6
,
8
,
10
)
def
test_list_not_equal
():
def
test_list_not_equal
():
...
...
tests/ut/python/exec/test_bias_add.py
浏览文件 @
66bbdb4a
...
@@ -33,7 +33,7 @@ class Net(nn.Cell):
...
@@ -33,7 +33,7 @@ class Net(nn.Cell):
self
.
biasAdd
=
P
.
BiasAdd
()
self
.
biasAdd
=
P
.
BiasAdd
()
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
output_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
output_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
self
.
bias
=
Parameter
(
initializer
(
...
...
tests/ut/python/exec/test_train.py
浏览文件 @
66bbdb4a
...
@@ -65,7 +65,7 @@ def test_bias_add(test_with_simu):
...
@@ -65,7 +65,7 @@ def test_bias_add(test_with_simu):
self
.
biasAdd
=
P
.
BiasAdd
()
self
.
biasAdd
=
P
.
BiasAdd
()
if
isinstance
(
bias_init
,
Tensor
):
if
isinstance
(
bias_init
,
Tensor
):
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
()
[
0
]
!=
output_channels
:
if
bias_init
.
dim
()
!=
1
or
bias_init
.
shape
[
0
]
!=
output_channels
:
raise
ValueError
(
"bias_init shape error"
)
raise
ValueError
(
"bias_init shape error"
)
self
.
bias
=
Parameter
(
initializer
(
self
.
bias
=
Parameter
(
initializer
(
...
...
tests/ut/python/ir/test_tensor.py
浏览文件 @
66bbdb4a
...
@@ -50,148 +50,148 @@ def test_tensor():
...
@@ -50,148 +50,148 @@ def test_tensor():
"""test_tensor"""
"""test_tensor"""
t1
=
ms
.
Tensor
(
ndarr
)
t1
=
ms
.
Tensor
(
ndarr
)
assert
isinstance
(
t1
,
ms
.
Tensor
)
assert
isinstance
(
t1
,
ms
.
Tensor
)
assert
t1
.
dtype
()
==
ms
.
float64
assert
t1
.
dtype
==
ms
.
float64
t2
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]),
ms
.
float32
)
t2
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]),
ms
.
float32
)
assert
isinstance
(
t2
,
ms
.
Tensor
)
assert
isinstance
(
t2
,
ms
.
Tensor
)
assert
t2
.
shape
()
==
(
1
,
2
,
3
)
assert
t2
.
shape
==
(
1
,
2
,
3
)
assert
t2
.
dtype
()
==
ms
.
float32
assert
t2
.
dtype
==
ms
.
float32
t3
=
ms
.
Tensor
(
0.1
)
t3
=
ms
.
Tensor
(
0.1
)
assert
isinstance
(
t3
,
ms
.
Tensor
)
assert
isinstance
(
t3
,
ms
.
Tensor
)
assert
t3
.
dtype
()
==
ms
.
float64
assert
t3
.
dtype
==
ms
.
float64
t4
=
ms
.
Tensor
(
1
)
t4
=
ms
.
Tensor
(
1
)
assert
isinstance
(
t4
,
ms
.
Tensor
)
assert
isinstance
(
t4
,
ms
.
Tensor
)
assert
t4
.
dtype
()
==
ms
.
int64
assert
t4
.
dtype
==
ms
.
int64
def
test_tensor_type_float16
():
def
test_tensor_type_float16
():
t_float16
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
float16
))
t_float16
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
float16
))
assert
isinstance
(
t_float16
,
ms
.
Tensor
)
assert
isinstance
(
t_float16
,
ms
.
Tensor
)
assert
t_float16
.
shape
()
==
(
2
,
3
)
assert
t_float16
.
shape
==
(
2
,
3
)
assert
t_float16
.
dtype
()
==
ms
.
float16
assert
t_float16
.
dtype
==
ms
.
float16
def
test_tensor_type_float32
():
def
test_tensor_type_float32
():
t_float32
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
float32
))
t_float32
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
float32
))
assert
isinstance
(
t_float32
,
ms
.
Tensor
)
assert
isinstance
(
t_float32
,
ms
.
Tensor
)
assert
t_float32
.
shape
()
==
(
2
,
3
)
assert
t_float32
.
shape
==
(
2
,
3
)
assert
t_float32
.
dtype
()
==
ms
.
float32
assert
t_float32
.
dtype
==
ms
.
float32
def
test_tensor_type_float32_user_define
():
def
test_tensor_type_float32_user_define
():
t
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]),
ms
.
float32
)
t
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]),
ms
.
float32
)
assert
isinstance
(
t
,
ms
.
Tensor
)
assert
isinstance
(
t
,
ms
.
Tensor
)
assert
t
.
shape
()
==
(
1
,
2
,
3
)
assert
t
.
shape
==
(
1
,
2
,
3
)
assert
t
.
dtype
()
==
ms
.
float32
assert
t
.
dtype
==
ms
.
float32
def
test_tensor_type_float64
():
def
test_tensor_type_float64
():
t
=
ms
.
Tensor
([[
1.0
,
2
,
3
],
[
4
,
5
,
6
]])
t
=
ms
.
Tensor
([[
1.0
,
2
,
3
],
[
4
,
5
,
6
]])
assert
isinstance
(
t
,
ms
.
Tensor
)
assert
isinstance
(
t
,
ms
.
Tensor
)
assert
t
.
shape
()
==
(
2
,
3
)
assert
t
.
shape
==
(
2
,
3
)
assert
t
.
dtype
()
==
ms
.
float64
assert
t
.
dtype
==
ms
.
float64
t_zero
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]))
t_zero
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]))
assert
isinstance
(
t_zero
,
ms
.
Tensor
)
assert
isinstance
(
t_zero
,
ms
.
Tensor
)
assert
t_zero
.
shape
()
==
(
1
,
2
,
3
)
assert
t_zero
.
shape
==
(
1
,
2
,
3
)
assert
t_zero
.
dtype
()
==
ms
.
float64
assert
t_zero
.
dtype
==
ms
.
float64
def
test_tensor_type_float64_user_define
():
def
test_tensor_type_float64_user_define
():
t
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
float
))
t
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
float
))
assert
isinstance
(
t
,
ms
.
Tensor
)
assert
isinstance
(
t
,
ms
.
Tensor
)
assert
t
.
shape
()
==
(
2
,
3
)
assert
t
.
shape
==
(
2
,
3
)
assert
t
.
dtype
()
==
ms
.
float64
assert
t
.
dtype
==
ms
.
float64
t_float64
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]),
ms
.
float64
)
t_float64
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]),
ms
.
float64
)
assert
isinstance
(
t_float64
,
ms
.
Tensor
)
assert
isinstance
(
t_float64
,
ms
.
Tensor
)
assert
t_float64
.
shape
()
==
(
2
,
3
)
assert
t_float64
.
shape
==
(
2
,
3
)
assert
t_float64
.
dtype
()
==
ms
.
float64
assert
t_float64
.
dtype
==
ms
.
float64
def
test_tensor_type_bool
():
def
test_tensor_type_bool
():
# init a tensor with bool type
# init a tensor with bool type
ts_bool_array
=
ms
.
Tensor
(
np
.
zeros
([
2
,
3
],
np
.
bool
),
ms
.
bool_
)
ts_bool_array
=
ms
.
Tensor
(
np
.
zeros
([
2
,
3
],
np
.
bool
),
ms
.
bool_
)
assert
isinstance
(
ts_bool_array
,
ms
.
Tensor
)
assert
isinstance
(
ts_bool_array
,
ms
.
Tensor
)
assert
ts_bool_array
.
dtype
()
==
ms
.
bool_
assert
ts_bool_array
.
dtype
==
ms
.
bool_
t_bool
=
ms
.
Tensor
(
True
)
t_bool
=
ms
.
Tensor
(
True
)
assert
isinstance
(
t_bool
,
ms
.
Tensor
)
assert
isinstance
(
t_bool
,
ms
.
Tensor
)
assert
t_bool
.
dtype
()
==
ms
.
bool_
assert
t_bool
.
dtype
==
ms
.
bool_
t_bool_array
=
ms
.
Tensor
(
np
.
array
([[
True
,
False
,
True
],
[
False
,
False
,
False
]]))
t_bool_array
=
ms
.
Tensor
(
np
.
array
([[
True
,
False
,
True
],
[
False
,
False
,
False
]]))
assert
isinstance
(
t_bool_array
,
ms
.
Tensor
)
assert
isinstance
(
t_bool_array
,
ms
.
Tensor
)
assert
t_bool_array
.
shape
()
==
(
2
,
3
)
assert
t_bool_array
.
shape
==
(
2
,
3
)
assert
t_bool_array
.
dtype
()
==
ms
.
bool_
assert
t_bool_array
.
dtype
==
ms
.
bool_
def
test_tensor_type_int8
():
def
test_tensor_type_int8
():
t_int8_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int8
))
t_int8_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int8
))
assert
isinstance
(
t_int8_array
,
ms
.
Tensor
)
assert
isinstance
(
t_int8_array
,
ms
.
Tensor
)
assert
t_int8_array
.
shape
()
==
(
2
,
3
)
assert
t_int8_array
.
shape
==
(
2
,
3
)
assert
t_int8_array
.
dtype
()
==
ms
.
int8
assert
t_int8_array
.
dtype
==
ms
.
int8
def
test_tensor_type_int16
():
def
test_tensor_type_int16
():
t_int16_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int16
))
t_int16_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int16
))
assert
isinstance
(
t_int16_array
,
ms
.
Tensor
)
assert
isinstance
(
t_int16_array
,
ms
.
Tensor
)
assert
t_int16_array
.
shape
()
==
(
2
,
3
)
assert
t_int16_array
.
shape
==
(
2
,
3
)
assert
t_int16_array
.
dtype
()
==
ms
.
int16
assert
t_int16_array
.
dtype
==
ms
.
int16
def
test_tensor_type_int32
():
def
test_tensor_type_int32
():
t_int
=
ms
.
Tensor
([[
1
,
2
,
3
],
[
4
,
5
,
6
]])
t_int
=
ms
.
Tensor
([[
1
,
2
,
3
],
[
4
,
5
,
6
]])
assert
isinstance
(
t_int
,
ms
.
Tensor
)
assert
isinstance
(
t_int
,
ms
.
Tensor
)
assert
t_int
.
shape
()
==
(
2
,
3
)
assert
t_int
.
shape
==
(
2
,
3
)
assert
t_int
.
dtype
()
==
ms
.
int64
assert
t_int
.
dtype
==
ms
.
int64
t_int_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int32
))
t_int_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int32
))
assert
isinstance
(
t_int_array
,
ms
.
Tensor
)
assert
isinstance
(
t_int_array
,
ms
.
Tensor
)
assert
t_int_array
.
shape
()
==
(
2
,
3
)
assert
t_int_array
.
shape
==
(
2
,
3
)
assert
t_int_array
.
dtype
()
==
ms
.
int32
assert
t_int_array
.
dtype
==
ms
.
int32
def
test_tensor_type_int64
():
def
test_tensor_type_int64
():
t_int64
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int64
))
t_int64
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
int64
))
assert
isinstance
(
t_int64
,
ms
.
Tensor
)
assert
isinstance
(
t_int64
,
ms
.
Tensor
)
assert
t_int64
.
shape
()
==
(
2
,
3
)
assert
t_int64
.
shape
==
(
2
,
3
)
assert
t_int64
.
dtype
()
==
ms
.
int64
assert
t_int64
.
dtype
==
ms
.
int64
def
test_tensor_type_uint8
():
def
test_tensor_type_uint8
():
t_uint8_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint8
))
t_uint8_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint8
))
assert
isinstance
(
t_uint8_array
,
ms
.
Tensor
)
assert
isinstance
(
t_uint8_array
,
ms
.
Tensor
)
assert
t_uint8_array
.
shape
()
==
(
2
,
3
)
assert
t_uint8_array
.
shape
==
(
2
,
3
)
assert
t_uint8_array
.
dtype
()
==
ms
.
uint8
assert
t_uint8_array
.
dtype
==
ms
.
uint8
def
test_tensor_type_uint16
():
def
test_tensor_type_uint16
():
t_uint16_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint16
))
t_uint16_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint16
))
assert
isinstance
(
t_uint16_array
,
ms
.
Tensor
)
assert
isinstance
(
t_uint16_array
,
ms
.
Tensor
)
assert
t_uint16_array
.
shape
()
==
(
2
,
3
)
assert
t_uint16_array
.
shape
==
(
2
,
3
)
assert
t_uint16_array
.
dtype
()
==
ms
.
uint16
assert
t_uint16_array
.
dtype
==
ms
.
uint16
def
test_tensor_type_uint32
():
def
test_tensor_type_uint32
():
t_uint32_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint32
))
t_uint32_array
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint32
))
assert
isinstance
(
t_uint32_array
,
ms
.
Tensor
)
assert
isinstance
(
t_uint32_array
,
ms
.
Tensor
)
assert
t_uint32_array
.
shape
()
==
(
2
,
3
)
assert
t_uint32_array
.
shape
==
(
2
,
3
)
assert
t_uint32_array
.
dtype
()
==
ms
.
uint32
assert
t_uint32_array
.
dtype
==
ms
.
uint32
def
test_tensor_type_uint64
():
def
test_tensor_type_uint64
():
t_uint64
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint64
))
t_uint64
=
ms
.
Tensor
(
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
np
.
uint64
))
assert
isinstance
(
t_uint64
,
ms
.
Tensor
)
assert
isinstance
(
t_uint64
,
ms
.
Tensor
)
assert
t_uint64
.
shape
()
==
(
2
,
3
)
assert
t_uint64
.
shape
==
(
2
,
3
)
assert
t_uint64
.
dtype
()
==
ms
.
uint64
assert
t_uint64
.
dtype
==
ms
.
uint64
def
test_set_type
():
def
test_set_type
():
t
=
ms
.
Tensor
(
ndarr
)
t
=
ms
.
Tensor
(
ndarr
)
t
.
set_dtype
(
ms
.
float32
)
t
.
set_dtype
(
ms
.
float32
)
assert
t
.
dtype
()
==
ms
.
float32
assert
t
.
dtype
==
ms
.
float32
@
non_graph_engine
@
non_graph_engine
...
@@ -250,11 +250,11 @@ def test_return_tensor():
...
@@ -250,11 +250,11 @@ def test_return_tensor():
tensor_
=
exe
(
net
,
input_data
)
tensor_
=
exe
(
net
,
input_data
)
# get shape
# get shape
shape_
=
tensor_
.
shape
()
shape_
=
tensor_
.
shape
print
(
"shape = "
,
shape_
)
print
(
"shape = "
,
shape_
)
# get type
# get type
type_
=
tensor_
.
dtype
()
type_
=
tensor_
.
dtype
print
(
"type = "
,
type_
)
print
(
"type = "
,
type_
)
# get value
# get value
...
...
tests/ut/python/ir/test_tensor_py.py
浏览文件 @
66bbdb4a
...
@@ -71,7 +71,7 @@ def test_tensor_size():
...
@@ -71,7 +71,7 @@ def test_tensor_size():
def
test_dtype
():
def
test_dtype
():
a
=
ms
.
Tensor
(
np
.
ones
((
2
,
3
),
dtype
=
np
.
int32
))
a
=
ms
.
Tensor
(
np
.
ones
((
2
,
3
),
dtype
=
np
.
int32
))
assert
a
.
dtype
()
==
ms
.
int32
assert
a
.
dtype
==
ms
.
int32
def
test_asnumpy
():
def
test_asnumpy
():
...
@@ -89,7 +89,7 @@ def test_print():
...
@@ -89,7 +89,7 @@ def test_print():
def
test_float
():
def
test_float
():
a
=
ms
.
Tensor
(
np
.
ones
((
2
,
3
)),
ms
.
float16
)
a
=
ms
.
Tensor
(
np
.
ones
((
2
,
3
)),
ms
.
float16
)
assert
a
.
dtype
()
==
ms
.
float16
assert
a
.
dtype
==
ms
.
float16
def
test_tensor_method_sub
():
def
test_tensor_method_sub
():
...
...
tests/ut/python/pipeline/infer/infer.py
浏览文件 @
66bbdb4a
...
@@ -71,7 +71,7 @@ def test(name, file_path, batch_size):
...
@@ -71,7 +71,7 @@ def test(name, file_path, batch_size):
data_list
.
append
(
data
.
asnumpy
())
data_list
.
append
(
data
.
asnumpy
())
batch_data
=
np
.
concatenate
(
data_list
,
axis
=
0
).
transpose
((
0
,
3
,
1
,
2
))
batch_data
=
np
.
concatenate
(
data_list
,
axis
=
0
).
transpose
((
0
,
3
,
1
,
2
))
input_tensor
=
Tensor
(
batch_data
)
input_tensor
=
Tensor
(
batch_data
)
print
(
input_tensor
.
shape
()
)
print
(
input_tensor
.
shape
)
network
(
input_tensor
)
network
(
input_tensor
)
...
...
tests/ut/python/pynative_mode/nn/test_layernorm.py
浏览文件 @
66bbdb4a
...
@@ -23,7 +23,7 @@ from mindspore import dtype as mstype
...
@@ -23,7 +23,7 @@ from mindspore import dtype as mstype
def
test_check_layer_norm_1
():
def
test_check_layer_norm_1
():
x
=
Tensor
(
np
.
ones
([
20
,
5
,
10
,
10
]),
mstype
.
float32
)
x
=
Tensor
(
np
.
ones
([
20
,
5
,
10
,
10
]),
mstype
.
float32
)
shape1
=
x
.
shape
()
[
1
:]
shape1
=
x
.
shape
[
1
:]
m
=
nn
.
LayerNorm
(
shape1
,
-
1
,
1
)
m
=
nn
.
LayerNorm
(
shape1
,
-
1
,
1
)
with
pytest
.
raises
(
NotImplementedError
):
with
pytest
.
raises
(
NotImplementedError
):
m
(
x
)
m
(
x
)
...
@@ -31,7 +31,7 @@ def test_check_layer_norm_1():
...
@@ -31,7 +31,7 @@ def test_check_layer_norm_1():
def
test_check_layer_norm_2
():
def
test_check_layer_norm_2
():
x
=
Tensor
(
np
.
ones
([
20
,
5
,
10
,
10
]),
mstype
.
float32
)
x
=
Tensor
(
np
.
ones
([
20
,
5
,
10
,
10
]),
mstype
.
float32
)
shape1
=
x
.
shape
()
[
1
:]
shape1
=
x
.
shape
[
1
:]
m
=
nn
.
LayerNorm
(
shape1
,
begin_params_axis
=
1
)
m
=
nn
.
LayerNorm
(
shape1
,
begin_params_axis
=
1
)
with
pytest
.
raises
(
NotImplementedError
):
with
pytest
.
raises
(
NotImplementedError
):
m
(
x
)
m
(
x
)
...
...
tests/ut/python/utils/test_initializer.py
浏览文件 @
66bbdb4a
...
@@ -65,7 +65,7 @@ def test_init_Initializer():
...
@@ -65,7 +65,7 @@ def test_init_Initializer():
def
test_init_tensor
():
def
test_init_tensor
():
tensor
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]))
tensor
=
ms
.
Tensor
(
np
.
zeros
([
1
,
2
,
3
]))
tensor
=
init
.
initializer
(
tensor
,
[
1
,
2
,
3
],
ms
.
float32
)
tensor
=
init
.
initializer
(
tensor
,
[
1
,
2
,
3
],
ms
.
float32
)
assert
tensor
.
shape
()
==
(
1
,
2
,
3
)
assert
tensor
.
shape
==
(
1
,
2
,
3
)
def
test_init_zero_default_dtype
():
def
test_init_zero_default_dtype
():
...
...
tests/ut/python/utils/test_serialize.py
浏览文件 @
66bbdb4a
...
@@ -126,8 +126,8 @@ def test_load_checkpoint():
...
@@ -126,8 +126,8 @@ def test_load_checkpoint():
assert
len
(
par_dict
)
==
3
assert
len
(
par_dict
)
==
3
assert
par_dict
[
'param_test'
].
name
==
'param_test'
assert
par_dict
[
'param_test'
].
name
==
'param_test'
assert
par_dict
[
'param_test'
].
data
.
dtype
()
==
mstype
.
float32
assert
par_dict
[
'param_test'
].
data
.
dtype
==
mstype
.
float32
assert
par_dict
[
'param_test'
].
data
.
shape
()
==
(
1
,
3
,
224
,
224
)
assert
par_dict
[
'param_test'
].
data
.
shape
==
(
1
,
3
,
224
,
224
)
assert
isinstance
(
par_dict
,
dict
)
assert
isinstance
(
par_dict
,
dict
)
...
...
tests/vm_impl/array_ops_vm_impl.py
浏览文件 @
66bbdb4a
...
@@ -46,7 +46,7 @@ def vm_impl_dType(self):
...
@@ -46,7 +46,7 @@ def vm_impl_dType(self):
def
vm_impl
(
x
):
def
vm_impl
(
x
):
# update the src type
# update the src type
return
x
.
dtype
()
return
x
.
dtype
return
vm_impl
return
vm_impl
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录