提交 64c2f195 编写于 作者: S sunsuodong

int8_relu_hswish

上级 53381282
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/activation.h"
#include "src/runtime/kernel/arm/int8/relu_int8.h"
#include "src/runtime/kernel/arm/int8/hswish_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Activation;
namespace mindspore::kernel {
kernel::LiteKernel *CpuActivationInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *parameter, const lite::Context *ctx,
const KernelKey &desc) {
if (parameter == nullptr) {
MS_LOG(ERROR) << "parameter is nullptr";
return nullptr;
}
MS_ASSERT(inputs.at(0));
auto type = (reinterpret_cast<ActivationParameter *>(parameter))->type_;
kernel::LiteKernel *kernel = nullptr;
switch (static_cast<schema::ActivationType>(type)) {
case schema::ActivationType_RELU:
kernel = new (std::nothrow) ReluInt8CPUKernel(parameter, inputs, outputs, ctx);
break;
case schema::ActivationType_HSWISH:
kernel = new (std::nothrow) HswishInt8CPUKernel(parameter, inputs, outputs, ctx);
break;
default:
break;
}
if (kernel == nullptr) {
MS_LOG(ERROR) << "Create kernel failed";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Activation, CpuActivationInt8KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/hswish_int8.h"
#include <limits>
#include "src/runtime/kernel/arm/opclib/int8/hswish_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::ActivationType_HSWISH;
namespace mindspore::kernel {
int HswishInt8CPUKernel::Init() {
lite::tensor::Tensor *input = inputs_.at(0);
lite::tensor::Tensor *output = outputs_.at(0);
MS_ASSERT(input);
MS_ASSERT(output);
quant_arg_.input_scale = input->GetQuantParams().front().scale;
quant_arg_.input_zp = input->GetQuantParams().front().zeroPoint;
quant_arg_.output_scale = output->GetQuantParams().front().scale;
quant_arg_.output_zp = output->GetQuantParams().front().zeroPoint;
const float output_multiplier = (1.0f / 128.0f) * quant_arg_.input_scale / quant_arg_.output_scale;
int32_t output_multiplier_fixedpoint;
QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint, &quant_arg_.output_multiplier_exponent);
MS_ASSERT(quant_arg_.output_multiplier_exponent <= 0);
MultiplierInt32ToInt16(output_multiplier_fixedpoint, &quant_arg_.output_multiplier_fixedpoint_int16);
const float relu6_multiplier = (1.0f / 128.0f) * quant_arg_.input_scale / (3.0f / 32768.0f);
int32_t relu6_multiplier_fixedpoint;
QuantizeMultiplier(relu6_multiplier, &relu6_multiplier_fixedpoint, &quant_arg_.relu6_multiplier_exponent);
MultiplierInt32ToInt16(relu6_multiplier_fixedpoint, &quant_arg_.relu6_multiplier_fixedpoint_int16);
return RET_OK;
}
void HswishInt8CPUKernel::MultiplierInt32ToInt16(int32_t input, int16_t *output) {
MS_ASSERT(input >= 0);
if (input >= std::numeric_limits<int32_t>::max() - (1 << 15)) {
*output = std::numeric_limits<int16_t>::max();
return;
}
*output = (input + (1 << 15)) >> 16;
}
int HswishInt8CPUKernel::ReSize() { return RET_OK; }
int HswishInt8CPUKernel::DoActivation(int task_id) {
auto input_addr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data());
auto output_addr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
auto length = inputs_.at(0)->ElementsNum();
int stride = UP_DIV(length, thread_count_);
int count = MSMIN(stride, length - stride * task_id);
HSwishInt8(input_addr + stride * task_id, count, output_addr + stride * task_id, &quant_arg_);
return RET_OK;
}
int HswishInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto activation_kernel = reinterpret_cast<HswishInt8CPUKernel *>(cdata);
auto error_code = activation_kernel->DoActivation(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "HswishInt8Run error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
int HswishInt8CPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(HswishInt8Run, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "HswishInt8Run function error error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_HSWISH_INT8_H_
#define MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_HSWISH_INT8_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/opclib/int8/hswish_int8.h"
namespace mindspore::kernel {
class HswishInt8CPUKernel : public LiteKernel {
public:
HswishInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx)
: LiteKernel(parameter, inputs, outputs), thread_count_(ctx->threadNum) {}
~HswishInt8CPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoActivation(int task_id);
private:
int thread_count_;
HswishQuantArg quant_arg_;
void MultiplierInt32ToInt16(int32_t input, int16_t *output);
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_HSWISH_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/relu_int8.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::ActivationType_RELU;
namespace mindspore::kernel {
int ReluInt8CPUKernel::Init() {
lite::tensor::Tensor *input = inputs_.at(0);
lite::tensor::Tensor *output = outputs_.at(0);
MS_ASSERT(input);
MS_ASSERT(output);
quant_arg_.input_arg.scale_ = input->GetQuantParams().front().scale;
quant_arg_.input_arg.zp_ = input->GetQuantParams().front().zeroPoint;
quant_arg_.output_arg.scale_ = output->GetQuantParams().front().scale;
quant_arg_.output_arg.zp_ = output->GetQuantParams().front().zeroPoint;
const double multiplier = quant_arg_.input_arg.scale_ / quant_arg_.output_arg.scale_;
QuantizeMultiplierSmallerThanOne(multiplier, &quant_arg_.input_multiplier_, &quant_arg_.input_shift_);
int left_shift = -quant_arg_.input_shift_ > 0 ? -quant_arg_.input_shift_ : 0;
quant_arg_.right_shift_ = -quant_arg_.input_shift_ > 0 ? 0 : quant_arg_.input_shift_;
quant_arg_.left_shift_result_ = (1 << left_shift);
return RET_OK;
}
int ReluInt8CPUKernel::ReSize() { return RET_OK; }
int ReluInt8CPUKernel::DoActivation(int task_id) {
auto input_addr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data());
auto output_addr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
auto length = inputs_.at(0)->ElementsNum();
int stride = UP_DIV(length, thread_count_);
int count = MSMIN(stride, length - stride * task_id);
ReluInt8(input_addr + stride * task_id, count, output_addr + stride * task_id, &quant_arg_);
return RET_OK;
}
int ReluInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto activation_kernel = reinterpret_cast<ReluInt8CPUKernel *>(cdata);
auto error_code = activation_kernel->DoActivation(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "ReluInt8Run error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
int ReluInt8CPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(ReluInt8Run, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "ReluInt8Run function error error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_ACTIVATION_H_
#define MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_ACTIVATION_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/opclib/fp32/activation.h"
#include "src/runtime/kernel/arm/opclib/int8/relu_int8.h"
namespace mindspore::kernel {
class ReluInt8CPUKernel : public LiteKernel {
public:
ReluInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx)
: LiteKernel(parameter, inputs, outputs), thread_count_(ctx->threadNum) {
type_ = (reinterpret_cast<ActivationParameter *>(parameter))->type_;
}
~ReluInt8CPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoActivation(int task_id);
private:
int thread_count_;
int type_;
ReluQuantArg quant_arg_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_BACKEND_ARM_INT8_ACTIVATION_H_
......@@ -19,6 +19,7 @@
#include <math.h>
#include "src/runtime/kernel/arm/opclib/op_base.h"
#include "src/runtime/kernel/arm/opclib/errorcode.h"
#include "src/runtime/kernel/arm/opclib/quantization/fixed_point.h"
struct ActivationParameter {
OpParameter op_parameter_;
......@@ -75,4 +76,3 @@ inline int HSwish(const float *src, int length, float *dst) {
}
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_ACTIVATION_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/opclib/int8/hswish_int8.h"
int16_t SaturatingLeftShift(int16_t value, int shift_num) {
int32_t result = (int32_t)value * (1 << shift_num);
return MSMAX(MSMIN(result, SHRT_MAX), SHRT_MIN);
}
int HSwishInt8(const int8_t *src, int length, int8_t *dst, HswishQuantArg *arg) {
for (int i = 0; i < length; i++) {
const int16_t input_value = src[i] - arg->input_zp;
const int16_t input_value_scale = input_value * (1 << 7);
const int16_t input_value_on_preshift_output_scale =
SaturatingRoundingDoublingHighMulInt16(input_value_scale, arg->output_multiplier_fixedpoint_int16);
int16_t relu6_value = input_value_scale;
if (arg->relu6_multiplier_exponent > 0) {
relu6_value = SaturatingLeftShift(relu6_value, arg->relu6_multiplier_exponent - 1);
}
relu6_value = SaturatingRoundingDoublingHighMulInt16(relu6_value, arg->relu6_multiplier_fixedpoint_int16);
if (arg->relu6_multiplier_exponent > 0) {
relu6_value = SaturatingLeftShift(relu6_value, 1);
}
if (arg->relu6_multiplier_exponent < 0) {
relu6_value = RoundingDivideByPOT(relu6_value, -arg->relu6_multiplier_exponent);
}
relu6_value = (relu6_value + (1 << 15)) >> 1;
const int16_t preshift_output_value =
SaturatingRoundingDoublingHighMulInt16(relu6_value, input_value_on_preshift_output_scale);
int16_t output = RoundingDivideByPOT(preshift_output_value, -arg->output_multiplier_exponent);
output += arg->output_zp;
output = MSMIN(output, 127);
output = MSMAX(output, -128);
dst[i] = (int8_t)output;
}
return OPCLIB_OK;
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_HSWISH_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_HSWISH_INT8_H_
#include <math.h>
#include "src/runtime/kernel/arm/opclib/op_base.h"
#include "src/runtime/kernel/arm/opclib/errorcode.h"
#include "src/runtime/kernel/arm/opclib/quantization/fixed_point.h"
struct HswishQuantArg {
double input_scale;
int32_t input_zp;
double output_scale;
int32_t output_zp;
int16_t relu6_multiplier_fixedpoint_int16;
int32_t relu6_multiplier_exponent;
int16_t output_multiplier_fixedpoint_int16;
int32_t output_multiplier_exponent;
};
int HSwishInt8(const int8_t *src, int length, int8_t *dst, HswishQuantArg *arg);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_HSWISH_INT8_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_RELU_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_RELU_INT8_H_
#include <math.h>
#include "src/runtime/kernel/arm/opclib/op_base.h"
#include "src/runtime/kernel/arm/opclib/errorcode.h"
#include "src/runtime/kernel/arm/opclib/quantization/fixed_point.h"
struct ReluQuantArg {
QuantArg input_arg;
QuantArg output_arg;
int input_multiplier_;
int input_shift_;
int right_shift_;
int left_shift_result_;
};
inline void ReluInt8(const int8_t *src, int length, int8_t *dst, ReluQuantArg *arg) {
for (int i = 0; i < length; ++i) {
if (src[i] <= arg->input_arg.zp_) {
dst[i] = arg->output_arg.zp_;
continue;
}
const int32_t input_val = src[i] - arg->input_arg.zp_;
const int32_t scaled_input = SaturatingRoundingDoublingHighMul(input_val, arg->input_multiplier_);
const int32_t shifted_input = RoundingDivideByPOT(scaled_input * arg->left_shift_result_, -arg->right_shift_);
const int32_t output = shifted_input + arg->output_arg.zp_;
dst[i] = (int8_t)output;
}
}
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_RELU_INT8_H_
......@@ -35,10 +35,19 @@ inline int SaturatingRoundingDoublingHighMul(int a, int b) {
int64_t ab = ((int64_t)a) * ((int64_t)b);
int64_t rounding = ab >= 0 ? (1ll << 30) : (1ll - (1ll << 30));
// do not apply right shift to potential negetive values
int ab_mantissa = (int) ((ab + rounding) / (1ll << 31));
int ab_mantissa = (int)((ab + rounding) / (1ll << 31));
return ab_mantissa;
}
inline int16_t SaturatingRoundingDoublingHighMulInt16(int16_t a, int16_t b) {
if (a == SHRT_MIN && b == SHRT_MIN) {
return SHRT_MAX;
}
int32_t ab = ((int32_t)a) * ((int32_t)b);
int16_t rounding = ab >= 0 ? (1ll << 14) : (1ll - (1ll << 14));
return (int16_t)((ab + rounding) / (1ll << 15));
}
// division by a 2^exponent with rounding
// or arithmetic right shift with rouding
inline int RoundingDivideByPOT(int x, int exponent) {
......@@ -62,10 +71,7 @@ inline int32x4_t RoundingDivideByPOTInt32x4(int32x4_t x, int exponent) {
return vrshlq_s32(fixed_up_x, shift_vec);
}
inline int32x4_t SaturatingRoundingDoublingHighMulInt32x4(int32x4_t a, int32x4_t b) {
return vqrdmulhq_s32(a, b);
}
inline int32x4_t SaturatingRoundingDoublingHighMulInt32x4(int32x4_t a, int32x4_t b) { return vqrdmulhq_s32(a, b); }
#endif
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_QUANTIZATION_FIXED_POINT_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/fp32/activation.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/fp32/activation.h"
#include "mindspore/lite/src/runtime/kernel/arm/int8/hswish_int8.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/include/context.h"
namespace mindspore {
class TestHSwishInt8 : public mindspore::Common {
public:
TestHSwishInt8() {}
};
TEST_F(TestHSwishInt8, HSwish) {
lite::tensor::Tensor in_tensor(kNumberTypeInt8, {4, 4});
lite::tensor::Tensor out_tensor(kNumberTypeInt8, {4, 4});
int8_t input_data[] = {-116, -105, -93, -35, 23, 35, 46, 104}; // -3.5f, -3.0f, -2.5f, 0.f, 2.5f, 3.0f, 3.5f, 6.0f
int8_t output_data[8] = {0};
in_tensor.SetData(input_data);
out_tensor.SetData(output_data);
const lite::tensor::QuantArg quant_in = {0.0431373f, -35}; // -4.0 -- 7.0
const lite::tensor::QuantArg quant_out = {0.0392157f, -52}; // -3.0 -- 7.0
in_tensor.AddQuantParam(quant_in);
out_tensor.AddQuantParam(quant_out);
std::vector<lite::tensor::Tensor *> inputs = {&in_tensor};
std::vector<lite::tensor::Tensor *> outputs = {&out_tensor};
ActivationParameter parameter = {0};
parameter.op_parameter_.type_ = schema::PrimitiveType_Activation;
parameter.type_ = schema::ActivationType_HSWISH;
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Activation};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
auto ctx = std::make_shared<lite::Context>();
auto kernel = creator(inputs, outputs, reinterpret_cast<OpParameter *>(&parameter), ctx.get(), desc);
ASSERT_NE(kernel, nullptr);
auto ret = kernel->Run();
EXPECT_EQ(0, ret);
int8_t expect[8] = {-52, -52, -57, -52, 7, 25, 37, 101}; // 0, 0, -0.208333, 0, 2.29167, 3, 3.5, 6
for (int i = 0; i < 8; ++i) {
EXPECT_EQ(output_data[i], expect[i]);
}
in_tensor.SetData(nullptr);
out_tensor.SetData(nullptr);
}
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/int8/relu_int8.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/include/context.h"
namespace mindspore {
class TestReluInt8 : public mindspore::Common {
public:
TestReluInt8() {}
};
TEST_F(TestReluInt8, Relu) {
lite::tensor::Tensor in_tensor(kNumberTypeInt8, {2, 2});
lite::tensor::Tensor out_tensor(kNumberTypeInt8, {2, 2});
int8_t input_data[] = {-102, 25, -51, 89}; // -0.8 0.2 -0.4 0.7
int8_t output_data[4] = {0};
in_tensor.SetData(input_data);
out_tensor.SetData(output_data);
const lite::tensor::QuantArg quant_in = {0.00784314f, 0}; // -1.0--1.0 ->
const lite::tensor::QuantArg quant_out = {0.00784314f, 0};
in_tensor.AddQuantParam(quant_in);
out_tensor.AddQuantParam(quant_out);
std::vector<lite::tensor::Tensor *> inputs = {&in_tensor};
std::vector<lite::tensor::Tensor *> outputs = {&out_tensor};
ActivationParameter parameter = {0};
parameter.op_parameter_.type_ = schema::PrimitiveType_Activation;
parameter.type_ = schema::ActivationType_RELU;
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_Activation};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
auto ctx = std::make_shared<lite::Context>();
auto kernel = creator(inputs, outputs, reinterpret_cast<OpParameter *>(&parameter), ctx.get(), desc);
ASSERT_NE(kernel, nullptr);
auto ret = kernel->Run();
EXPECT_EQ(0, ret);
int8_t expect0[4] = {0, 26, 0, 90}; //
for (int i = 0; i < 4; ++i) {
EXPECT_EQ(output_data[i], expect0[i]);
}
in_tensor.SetData(nullptr);
out_tensor.SetData(nullptr);
}
} // namespace mindspore
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册