Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
60df3691
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
60df3691
编写于
4月 20, 2020
作者:
C
Cathy Wong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fixup py Normalize doc: takes input CHW
上级
6369cf27
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
4 addition
and
7 deletion
+4
-7
mindspore/dataset/transforms/vision/py_transforms.py
mindspore/dataset/transforms/vision/py_transforms.py
+1
-1
tests/ut/python/dataset/test_normalizeOp.py
tests/ut/python/dataset/test_normalizeOp.py
+3
-2
tests/ut/python/dataset/test_random_color_adjust.py
tests/ut/python/dataset/test_random_color_adjust.py
+0
-4
未找到文件。
mindspore/dataset/transforms/vision/py_transforms.py
浏览文件 @
60df3691
...
...
@@ -220,7 +220,7 @@ class Decode:
class
Normalize
:
"""
Normalize the input Numpy image array of shape (
H, W, C
) with the given mean and standard deviation.
Normalize the input Numpy image array of shape (
C, H, W
) with the given mean and standard deviation.
The values of the array need to be in range [0.0, 1.0].
...
...
tests/ut/python/dataset/test_normalizeOp.py
浏览文件 @
60df3691
...
...
@@ -15,7 +15,7 @@
import
mindspore.dataset.transforms.vision.c_transforms
as
vision
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
mindspore.dataset
as
ds
from
mindspore
import
log
as
logger
...
...
@@ -114,6 +114,7 @@ def test_decode_op():
# plt.subplot(131)
# plt.imshow(image)
# plt.title("DE image")
# plt.show()
num_iter
+=
1
...
...
@@ -138,8 +139,8 @@ def test_decode_normalize_op():
# plt.subplot(131)
# plt.imshow(image)
# plt.title("DE image")
# plt.show()
num_iter
+=
1
break
if
__name__
==
"__main__"
:
...
...
tests/ut/python/dataset/test_random_color_adjust.py
浏览文件 @
60df3691
...
...
@@ -182,8 +182,6 @@ def test_random_color_jitter_op_saturation():
]
transform
=
py_vision
.
ComposeOp
(
transforms
)
data2
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
# data2 = data2.map(input_columns=["image"], operations=decode_op)
# data2 = data2.map(input_columns=["image"], operations=c_vision.Decode())
data2
=
data2
.
map
(
input_columns
=
[
"image"
],
operations
=
transform
())
num_iter
=
0
...
...
@@ -220,8 +218,6 @@ def test_random_color_jitter_op_hue():
# First dataset
data1
=
ds
.
TFRecordDataset
(
DATA_DIR
,
SCHEMA_DIR
,
columns_list
=
[
"image"
],
shuffle
=
False
)
decode_op
=
c_vision
.
Decode
()
# channel_swap_op = c_vision.ChannelSwap()
# change_mode_op = c_vision.ChangeMode()
random_jitter_op
=
c_vision
.
RandomColorAdjust
((
1
,
1
),
(
1
,
1
),
(
1
,
1
),
(
0.2
,
0.2
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录