提交 5e9cfaf6 编写于 作者: 高东海's avatar 高东海

syn-code1

上级 40647516
......@@ -40,7 +40,7 @@ const int kCallbackOk = 0;
const int kCallbackFalied = 1;
bool GetParameterShape(const FuncGraphPtr& anf_graph, const std::string& param_name,
const std::shared_ptr<std::vector<int>>& shape)
const std::shared_ptr<std::vector<int>>& shape);
uint32_t SummarySaveCallback(uint32_t, const std::map<std::string, TensorPtr>&);
} // namespace callbacks
......
......@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
<<<<<<< HEAD:tests/st/networks/test_network_main.py
"""
Function:
test network
......@@ -32,47 +31,6 @@ from models.lenet import LeNet
from models.resnetv1_5 import resnet50
from models.alexnet import AlexNet
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
=======
import pytest
from mindspore.nn import TrainOneStepCell, WithLossCell
import mindspore.context as context
from mindspore.nn.optim import Momentum
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
class LeNet(nn.Cell):
def __init__(self):
super(LeNet, self).__init__()
self.relu = P.ReLU()
self.batch_size = 32
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.reshape = P.Reshape()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.reshape(output, (self.batch_size, -1))
output = self.fc1(output)
output = self.relu(output)
output = self.fc2(output)
output = self.relu(output)
output = self.fc3(output)
return output
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
>>>>>>> add cpu st lenet:tests/st/networks/test_cpu_lenet.py
def train(net, data, label):
learning_rate = 0.01
......@@ -89,24 +47,17 @@ def train(net, data, label):
print("+++++++++++++++++++++++++++")
assert res
<<<<<<< HEAD:tests/st/networks/test_network_main.py
def test_resnet50():
data = Tensor(np.ones([32, 3 ,224, 224]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32))
net = resnet50(32, 10)
train(net, data, label)
=======
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
>>>>>>> add cpu st lenet:tests/st/networks/test_cpu_lenet.py
def test_lenet():
data = Tensor(np.ones([32, 1 ,32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32))
net = LeNet()
train(net, data, label)
<<<<<<< HEAD:tests/st/networks/test_network_main.py
def test_alexnet():
data = Tensor(np.ones([32, 3 ,227, 227]).astype(np.float32) * 0.01)
......@@ -128,5 +79,3 @@ if __name__ == "__main__":
test_alexnet()
else:
print("Please add net name like --net lenet")
=======
>>>>>>> add cpu st lenet:tests/st/networks/test_cpu_lenet.py
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册