From 5e9cfaf6effad2cf6121e63ca434a31bd00f7d4d Mon Sep 17 00:00:00 2001 From: chang zherui <760161589@qq.com> Date: Fri, 10 Apr 2020 19:20:37 +0800 Subject: [PATCH] syn-code1 --- mindspore/ccsrc/pipeline/pipeline_ge.cc | 2 +- mindspore/ccsrc/utils/callbacks.h | 2 +- mindspore/nn/optim/rmsprop.py | 2 +- tests/st/networks/test_network_main.py | 55 +------------------------ 4 files changed, 5 insertions(+), 56 deletions(-) diff --git a/mindspore/ccsrc/pipeline/pipeline_ge.cc b/mindspore/ccsrc/pipeline/pipeline_ge.cc index ee67d46cf..6ce0ea531 100644 --- a/mindspore/ccsrc/pipeline/pipeline_ge.cc +++ b/mindspore/ccsrc/pipeline/pipeline_ge.cc @@ -533,4 +533,4 @@ void ExportDFGraph(const std::string& file_name, const std::string& phase) { MS_LOG(DEBUG) << "ExportGraph End"; } } // namespace pipeline -} // namespace mindspore \ No newline at end of file +} // namespace mindspore diff --git a/mindspore/ccsrc/utils/callbacks.h b/mindspore/ccsrc/utils/callbacks.h index 6f099ef4c..a1e4e75d5 100644 --- a/mindspore/ccsrc/utils/callbacks.h +++ b/mindspore/ccsrc/utils/callbacks.h @@ -40,7 +40,7 @@ const int kCallbackOk = 0; const int kCallbackFalied = 1; bool GetParameterShape(const FuncGraphPtr& anf_graph, const std::string& param_name, - const std::shared_ptr>& shape) + const std::shared_ptr>& shape); uint32_t SummarySaveCallback(uint32_t, const std::map&); } // namespace callbacks diff --git a/mindspore/nn/optim/rmsprop.py b/mindspore/nn/optim/rmsprop.py index e252f89f2..b17a10170 100644 --- a/mindspore/nn/optim/rmsprop.py +++ b/mindspore/nn/optim/rmsprop.py @@ -194,4 +194,4 @@ class RMSProp(Optimizer): else: success = self.hyper_map(F.partial(rmsprop_opt, self.opt, lr, self.decay, self.epsilon, self.momentum), params, self.ms, self.moment, gradients) - return success \ No newline at end of file + return success diff --git a/tests/st/networks/test_network_main.py b/tests/st/networks/test_network_main.py index 730602c0a..4689adee5 100644 --- a/tests/st/networks/test_network_main.py +++ b/tests/st/networks/test_network_main.py @@ -12,11 +12,10 @@ # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ -<<<<<<< HEAD:tests/st/networks/test_network_main.py """ -Function: +Function: test network -Usage: +Usage: python test_network_main.py --net lenet --target Ascend """ import os @@ -32,47 +31,6 @@ from models.lenet import LeNet from models.resnetv1_5 import resnet50 from models.alexnet import AlexNet context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") -======= -import pytest -from mindspore.nn import TrainOneStepCell, WithLossCell -import mindspore.context as context -from mindspore.nn.optim import Momentum -import numpy as np -import mindspore.nn as nn -from mindspore.ops import operations as P -from mindspore import Tensor - -class LeNet(nn.Cell): - def __init__(self): - super(LeNet, self).__init__() - self.relu = P.ReLU() - self.batch_size = 32 - - self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') - self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') - self.pool = nn.MaxPool2d(kernel_size=2, stride=2) - self.reshape = P.Reshape() - self.fc1 = nn.Dense(400, 120) - self.fc2 = nn.Dense(120, 84) - self.fc3 = nn.Dense(84, 10) - - def construct(self, input_x): - output = self.conv1(input_x) - output = self.relu(output) - output = self.pool(output) - output = self.conv2(output) - output = self.relu(output) - output = self.pool(output) - output = self.reshape(output, (self.batch_size, -1)) - output = self.fc1(output) - output = self.relu(output) - output = self.fc2(output) - output = self.relu(output) - output = self.fc3(output) - return output - -context.set_context(mode=context.GRAPH_MODE, device_target="CPU") ->>>>>>> add cpu st lenet:tests/st/networks/test_cpu_lenet.py def train(net, data, label): learning_rate = 0.01 @@ -89,24 +47,17 @@ def train(net, data, label): print("+++++++++++++++++++++++++++") assert res -<<<<<<< HEAD:tests/st/networks/test_network_main.py def test_resnet50(): data = Tensor(np.ones([32, 3 ,224, 224]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = resnet50(32, 10) train(net, data, label) -======= -@pytest.mark.level0 -@pytest.mark.platform_x86_cpu -@pytest.mark.env_onecard ->>>>>>> add cpu st lenet:tests/st/networks/test_cpu_lenet.py def test_lenet(): data = Tensor(np.ones([32, 1 ,32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([32]).astype(np.int32)) net = LeNet() train(net, data, label) -<<<<<<< HEAD:tests/st/networks/test_network_main.py def test_alexnet(): data = Tensor(np.ones([32, 3 ,227, 227]).astype(np.float32) * 0.01) @@ -128,5 +79,3 @@ if __name__ == "__main__": test_alexnet() else: print("Please add net name like --net lenet") -======= ->>>>>>> add cpu st lenet:tests/st/networks/test_cpu_lenet.py -- GitLab