Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
5cf472cd
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5cf472cd
编写于
4年前
作者:
P
peixu_ren
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add note of limitation for prarmeters of uniform
上级
2b23de61
master
无相关合并请求
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
4 addition
and
1 deletion
+4
-1
mindspore/nn/probability/README.md
mindspore/nn/probability/README.md
+1
-1
mindspore/ops/composite/random_ops.py
mindspore/ops/composite/random_ops.py
+3
-0
未找到文件。
mindspore/nn/probability/README.md
浏览文件 @
5cf472cd
...
...
@@ -32,7 +32,7 @@ The objective of MDP is to integrate deep learning with Bayesian learning. On th
-
Context: context managers for models and layers.
**Layer 3: Toolbox provides a set of BNN tools for some specific applications**
-
Uncertainty Estimation(
[
mindspore.nn.probability.toolbox.uncertainty_evaluat
e
](
https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/toolbox/uncertainty_evaluate
.py
)
): Interfaces to estimate epistemic uncertainty and aleatoric uncertainty.
-
Uncertainty Estimation(
[
mindspore.nn.probability.toolbox.uncertainty_evaluat
ion
](
https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/toolbox/uncertainty_evaluation
.py
)
): Interfaces to estimate epistemic uncertainty and aleatoric uncertainty.
-
OoD detection: Interfaces to detect out of distribution samples.
![
Structure of MDP
](
https://images.gitee.com/uploads/images/2020/0820/115117_2a20da64_7825995.png
"MDP.png"
)
...
...
This diff is collapsed.
Click to expand it.
mindspore/ops/composite/random_ops.py
浏览文件 @
5cf472cd
...
...
@@ -96,6 +96,9 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32):
"""
Generates random numbers according to the Uniform random number distribution.
Note:
The number in tensor a should be strictly less than b at any position after broadcasting.
Args:
shape (tuple): The shape of random tensor to be generated.
a (Tensor): The a distribution parameter.
...
...
This diff is collapsed.
Click to expand it.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录
反馈
建议
客服
返回
顶部