提交 57cd9f81 编写于 作者: Y yangzhenzhang

add parallel op for sigmoidloss

上级 2ca9e448
......@@ -127,6 +127,7 @@ REGISTER(NegInfo);
REGISTER(BatchMatMulInfo);
REGISTER(ExpandDimsInfo);
REGISTER(SqueezeInfo);
REGISTER(SigmoidCrossEntropyWithLogitsInfo);
} // namespace parallel
} // namespace mindspore
......
......@@ -120,6 +120,15 @@ class AssignSubInfo : public ArithmeticBase {
: ArithmeticBase(name, inputs_shape, outputs_shape, attrs, std::make_shared<ArithmeticCost>(false)) {}
~AssignSubInfo() override = default;
};
// All dimensions can be split arbitrarily, but the split method of Logits should be the same as that of label.
class SigmoidCrossEntropyWithLogitsInfo : public ArithmeticBase {
public:
SigmoidCrossEntropyWithLogitsInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
const PrimitiveAttrs& attrs)
: ArithmeticBase(name, inputs_shape, outputs_shape, attrs, std::make_shared<ArithmeticCost>(false)) {}
~SigmoidCrossEntropyWithLogitsInfo() override = default;
};
} // namespace parallel
} // namespace mindspore
......
......@@ -138,6 +138,7 @@ constexpr char ALL_GATHER[] = "AllGather";
constexpr char REDUCE_SCATTER[] = "ReduceScatter";
constexpr char CONCAT[] = "Concat";
constexpr char SOFTMAX_CROSS_ENTROPY_WITH_LOGITS[] = "SoftmaxCrossEntropyWithLogits";
constexpr char SIGMOID_CROSS_ENTROPY_WITH_LOGITS[] = "SigmoidCrossEntropyWithLogits";
constexpr char MATMUL[] = "MatMul";
constexpr char GELU[] = "Gelu";
constexpr char TANH[] = "Tanh";
......
......@@ -78,6 +78,7 @@ std::vector<std::string> splittable_op_ = {MATMUL,
FUSE_BATCH_NORM,
POOLING,
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
SIGMOID_CROSS_ENTROPY_WITH_LOGITS,
MAX_POOL_WITH_ARGMAX,
SIMPLE_MEAN,
FLATTEN,
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.loss = P.SigmoidCrossEntropyWithLogits().set_strategy(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.loss(out, b)
return out
_x = Tensor(np.ones([128, 64]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64]), dtype=ms.float32)
def compile(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_sigmoid_cross_entropy_with_logits_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1), (16, 1))
strategy2 = ((16, 1), (16, 1))
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_sigmoid_cross_entropy_with_logits_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 16), (1, 16))
strategy2 = ((1, 16), (1, 16))
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_sigmoid_cross_entropy_with_logits_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 8), (2, 8))
strategy2 = ((2, 8), (2, 8))
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_sigmoid_cross_entropy_with_logits_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile(net)
def test_sigmoid_cross_entropy_with_logits_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 8), (2, 8))
strategy2 = ((2, 2), (2, 2))
net = Net(_w1, strategy1, strategy2)
compile(net)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册