Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
553432c9
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
553432c9
编写于
6月 12, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 12, 2020
浏览文件
操作
浏览文件
下载
差异文件
!1958 Fix some description to API about optimizer.
Merge pull request !1958 from liuxiao/fix-for-issuse
上级
c27d4157
52790b74
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
24 addition
and
20 deletion
+24
-20
mindspore/nn/optim/adam.py
mindspore/nn/optim/adam.py
+9
-8
mindspore/nn/optim/lamb.py
mindspore/nn/optim/lamb.py
+6
-4
mindspore/nn/optim/lars.py
mindspore/nn/optim/lars.py
+2
-2
mindspore/nn/optim/sgd.py
mindspore/nn/optim/sgd.py
+5
-4
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+2
-2
未找到文件。
mindspore/nn/optim/adam.py
浏览文件 @
553432c9
...
...
@@ -162,13 +162,14 @@ class Adam(Optimizer):
in the value of 'order_params' but not in any group will use default learning rate and default weight
decay.
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. Default: 1e-3.
learning_rate (Union[int, float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a
Tensor but the dims of the Tensor is 0, use fixed learning
rate. Other cases are not supported. It should be equal to
or greater than 0. Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Should be in range (0.0, 1.0). Default:
0.9.
beta2 (float): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0). Default:
...
...
@@ -181,7 +182,7 @@ class Adam(Optimizer):
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
weight_decay (float): Weight decay (L2 penalty).
It should be equal to or greater than 0.
Default: 0.0.
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. Default: 1.0.
Inputs:
...
...
mindspore/nn/optim/lamb.py
浏览文件 @
553432c9
...
...
@@ -143,10 +143,12 @@ class Lamb(Optimizer):
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be class mindspore.Parameter.
decay_steps (int): The steps of the lr decay. Should be equal to or greater than 1.
warmup_steps (int): The steps of lr warm up. Default: 0.
start_learning_rate (float): A floating point value for the learning rate. Default: 0.1.
end_learning_rate (float): A floating point value for the end learning rate. Default: 0.0001.
power (float): The power of the polynomial. Default: 1.0.
warmup_steps (int): The steps of lr warm up. Should be equal to or greater than 0. Default: 0.
start_learning_rate (float): A floating point value for the learning rate. Should be equal to
or greater than 0. Default: 0.1.
end_learning_rate (float): A floating point value for the end learning rate. Should be equal to
or greater than 0. Default: 0.0001.
power (float): The power of the polynomial. It must be positive. Default: 1.0.
beta1 (float): The exponential decay rate for the 1st moment estimates. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimates. Default: 0.999.
...
...
mindspore/nn/optim/lars.py
浏览文件 @
553432c9
...
...
@@ -59,13 +59,13 @@ class LARS(Optimizer):
optimizer (Optimizer): MindSpore optimizer for which to wrap and modify gradients.
epsilon (float): Term added to the denominator to improve numerical stability. Default: 1e-05.
hyperpara (float): Trust coefficient for calculating the local learning rate. Default: 0.001.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
weight_decay (float): Weight decay (L2 penalty).
It should be equal to or greater than 0.
Default: 0.0.
use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False.
decay_filter (Function): A function to determine whether apply weight decay on parameters. Default:
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
lars_filter (Function): A function to determine whether apply lars algorithm. Default:
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
loss_scale (float): A floating point value for the loss scale. Default: 1.0.
loss_scale (float): A floating point value for the loss scale.
It should be greater than 0.
Default: 1.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is
...
...
mindspore/nn/optim/sgd.py
浏览文件 @
553432c9
...
...
@@ -73,10 +73,11 @@ class SGD(Optimizer):
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. Default: 0.1.
momentum (float): A floating point value the momentum. Default: 0.0.
dampening (float): A floating point value of dampening for momentum. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
Other cases are not supported. It should be equal to or
greater than 0. Default: 0.1.
momentum (float): A floating point value the momentum. should be at least 0.0. Default: 0.0.
dampening (float): A floating point value of dampening for momentum. should be at least 0.0. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
nesterov (bool): Enables the Nesterov momentum. Default: False.
loss_scale (float): A floating point value for the loss scale, which should be larger
than 0.0. Default: 1.0.
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
553432c9
...
...
@@ -3465,7 +3465,7 @@ class SparseApplyFtrl(PrimitiveWithInfer):
validator
.
check_value_type
(
"l1"
,
l1
,
[
float
],
self
.
name
)
validator
.
check_value_type
(
"l2"
,
l2
,
[
float
],
self
.
name
)
validator
.
check_value_type
(
"lr_power"
,
lr_power
,
[
float
],
self
.
name
)
self
.
lr
=
validator
.
check_number_range
(
"lr"
,
lr
,
0.0
,
float
(
"inf"
),
Rel
.
INC_
LEFT
,
self
.
name
)
self
.
lr
=
validator
.
check_number_range
(
"lr"
,
lr
,
0.0
,
float
(
"inf"
),
Rel
.
INC_
NEITHER
,
self
.
name
)
self
.
l1
=
validator
.
check_number
(
"l1"
,
l1
,
0.0
,
Rel
.
GE
,
self
.
name
)
self
.
l2
=
validator
.
check_number
(
"l2"
,
l2
,
0.0
,
Rel
.
GE
,
self
.
name
)
self
.
lr_power
=
validator
.
check_number
(
"lr_power"
,
lr_power
,
0
,
Rel
.
LE
,
self
.
name
)
...
...
@@ -3656,7 +3656,7 @@ class CTCLoss(PrimitiveWithInfer):
"""
@
prim_attr_register
def
__init__
(
self
,
preprocess_collapse_repeated
=
False
,
ctc_merge_repeated
=
Fals
e
,
def
__init__
(
self
,
preprocess_collapse_repeated
=
False
,
ctc_merge_repeated
=
Tru
e
,
ignore_longer_outputs_than_inputs
=
False
):
self
.
init_prim_io_names
(
inputs
=
[
"inputs"
,
"labels_indices"
,
"labels_values"
,
"sequence_length"
],
outputs
=
[
"loss"
,
"gradient"
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录