提交 52f2d581 编写于 作者: G GuoMengHao

add_tf_and_ms_checkpoint_transfer_tools

上级 e7df5416
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
mindspore and tensorflow checkpoint transfer tools
"""
import argparse
import tensorflow as tf
from mindspore.common.tensor import Tensor
from mindspore.train.serialization import load_checkpoint, save_checkpoint
from ms2tf_config import param_name_dict as ms2tf_param_dict
def convert_ms_2_tf(tf_ckpt_path, ms_ckpt_path, new_ckpt_path):
"""
convert ms checkpoint to tf checkpoint
"""
# load MS checkpoint
ms_param_dict = load_checkpoint(ms_ckpt_path)
for name in ms_param_dict.keys():
if isinstance(ms_param_dict[name].data, Tensor):
ms_param_dict[name] = ms_param_dict[name].data.asnumpy()
convert_count = 0
with tf.Session() as sess:
# convert ms shape to tf
print("start convert parameter ...")
new_var_list = []
for var_name, shape in tf.contrib.framework.list_variables(tf_ckpt_path):
if var_name in ms2tf_param_dict:
ms_name = ms2tf_param_dict[var_name]
new_tensor = tf.convert_to_tensor(ms_param_dict[ms_name])
if len(shape) == 2:
if tuple(shape) != new_tensor.shape or new_tensor.shape[0] == new_tensor.shape[1]:
new_tensor = tf.transpose(new_tensor, (1, 0))
if new_tensor.shape != tuple(shape):
raise ValueError("shape is not matched after transpose!! {}, {}"
.format(str(new_tensor.shape), str(tuple(shape))))
if new_tensor.shape != tuple(shape):
raise ValueError("shape is not matched after transpose!! {}, {}"
.format(str(new_tensor.shape), str(tuple(shape))))
var = tf.Variable(new_tensor, name=var_name)
convert_count = convert_count + 1
else:
var = tf.Variable(tf.contrib.framework.load_variable(tf_ckpt_path, var_name), name=var_name)
new_var_list.append(var)
print('convert value num: ', convert_count, " of ", len(ms2tf_param_dict))
# saving tf checkpoint
print("start saving ...")
saver = tf.train.Saver(var_list=new_var_list)
sess.run(tf.global_variables_initializer())
saver.save(sess, new_ckpt_path)
print("tf checkpoint was save in :", new_ckpt_path)
return True
def convert_tf_2_ms(tf_ckpt_path, ms_ckpt_path, new_ckpt_path):
"""
convert tf checkpoint to ms checkpoint
"""
tf2ms_param_dict = dict(zip(ms2tf_param_dict.values(), ms2tf_param_dict.keys()))
# load MS checkpoint
ms_param_dict = load_checkpoint(ms_ckpt_path)
new_params_list = []
session = tf.compat.v1.Session()
count = 0
for ms_name in tf2ms_param_dict.keys():
count += 1
param_dict = {}
tf_name = tf2ms_param_dict[ms_name]
data = tf.train.load_variable(tf_ckpt_path, tf_name)
ms_shape = ms_param_dict[ms_name].data.shape
tf_shape = data.shape
if len(ms_shape) == 2:
if ms_shape != tf_shape or ms_shape[0] == ms_shape[1]:
data = tf.transpose(data, (1, 0))
data = data.eval(session=session)
param_dict['name'] = ms_name
param_dict['data'] = Tensor(data)
new_params_list.append(param_dict)
print("start saving checkpoint ...")
save_checkpoint(new_params_list, new_ckpt_path)
print("ms checkpoint was save in :", new_ckpt_path)
return True
def main():
"""
tf checkpoint transfer to ms or ms checkpoint transfer to tf
"""
parser = argparse.ArgumentParser(description='checkpoint transfer.')
parser.add_argument("--tf_ckpt_path", type=str, default='./tf-bert/bs64k_32k_ckpt_model.ckpt-28252',
help="TensorFlow checkpoint dir, default is: './tf-bert/bs64k_32k_ckpt_model.ckpt-28252'.")
parser.add_argument("--ms_ckpt_path", type=str, default='./ms-bert/large_en.ckpt',
help="MindSpore checkpoint dir, default is: './ms-bert/large_en.ckpt'.")
parser.add_argument("--new_ckpt_path", type=str, default='./new_ckpt/new_bert_large_en.ckpt',
help="New checkpoint dir, default is: './new_ckpt/new_bert_large_en.ckpt'.")
parser.add_argument("--transfer_option", type=str, default='ms2tf',
help="option of transfer ms2tf or tf2ms, default is ms2tf.")
args_opt = parser.parse_args()
if args_opt.transfer_option == 'ms2tf':
print("start ms2tf option ...")
tf_ckpt_path = args_opt.tf_ckpt_path
ms_ckpt_path = args_opt.ms_ckpt_path
new_ckpt_path = args_opt.new_ckpt_path
convert_ms_2_tf(tf_ckpt_path, ms_ckpt_path, new_ckpt_path)
elif args_opt.transfer_option == 'tf2ms':
print("start tf2ms option ...")
tf_ckpt_path = args_opt.tf_ckpt_path
ms_ckpt_path = args_opt.ms_ckpt_path
new_ckpt_path = args_opt.new_ckpt_path
convert_tf_2_ms(tf_ckpt_path, ms_ckpt_path, new_ckpt_path)
else:
print("ERROR: '--transfer_option' please select 0 or 1")
if __name__ == "__main__":
main()
# Mindspore and Tensorflow checkpoint transfer tools
# How to use
## 1. For Mindspore to Tensorflow
```
python ms_and_tf_checkpoint_transfer_for_bert_large.py \
--transfer_option='ms2tf' \
--ms_ckpt_path='/data/ms-bert/checkpoint_bert-1500_100.ckpt' \
--tf_ckpt_path='/data/tf-bert/bs64k_32k_ckpt_model.ckpt' \
--new_ckpt_path='/data/ms2tf/tf_bert_large_1500-100.ckpt'
```
## 2. For Tensorflow to Mindspore
```
python ms_and_tf_checkpoint_transfer_for_bert_large.py \
--transfer_option='tf2ms' \
--tf_ckpt_path='/data/tf-bert/tf_bert_large_1500-100.ckpt' \
--ms_ckpt_path='/data/ms-bert/checkpoint_bert-1500_100.ckpt' \
--new_ckpt_path='/data/tf2ms/ms_bert_large_1500-100.ckpt'
```
# Note
Please note that both tf2ms and ms2tf require two inputs, one output, one of the two inputs is the checkpoint to be converted, and the other is the target checkpoint to be referred to. Because there are many types of bert models, the meaning of the target checkpoint is to prevent you from using different checkpoints for conversion errors.
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册