提交 4e63cccc 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!4837 modify arm cpu fp16 & fp32 op: arithmetic

Merge pull request !4837 from 陶云浩/arithmetic0
......@@ -162,34 +162,9 @@ int ArithmeticFP16CPUKernel::Init() {
}
int ArithmeticFP16CPUKernel::ReSize() {
FreeTmpBuffer();
arithmeticParameter_->in_elements_num0_ = in_tensors_[0]->ElementsNum();
arithmeticParameter_->in_elements_num1_ = in_tensors_[1]->ElementsNum();
arithmeticParameter_->out_elements_num_ = out_tensors_[0]->ElementsNum();
if (in_tensors_[0]->data_type() == kNumberTypeFloat32 || in_tensors_[0]->data_type() == kNumberTypeFloat) {
input0_fp16_ = reinterpret_cast<float16_t *>(
context_->allocator->Malloc(arithmeticParameter_->in_elements_num0_ * sizeof(float16_t)));
if (input0_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
return RET_ERROR;
}
}
if (in_tensors_[1]->data_type() == kNumberTypeFloat32 || in_tensors_[1]->data_type() == kNumberTypeFloat) {
input1_fp16_ = reinterpret_cast<float16_t *>(
context_->allocator->Malloc(arithmeticParameter_->in_elements_num1_ * sizeof(float16_t)));
if (input0_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
return RET_ERROR;
}
}
if (out_tensors_[0]->data_type() == kNumberTypeFloat32 || out_tensors_[0]->data_type() == kNumberTypeFloat) {
output_fp16_ = reinterpret_cast<float16_t *>(
context_->allocator->Malloc(arithmeticParameter_->out_elements_num_ * sizeof(float16_t)));
if (output_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
return RET_ERROR;
}
}
if (arithmeticParameter_->in_elements_num0_ == 1 || arithmeticParameter_->in_elements_num1_ == 1) {
switch (arithmeticParameter_->op_parameter_.type_) {
......@@ -292,20 +267,6 @@ int ArithmeticFP16CPUKernel::ReSize() {
break;
}
}
if (arithmeticParameter_->broadcasting_) {
outside_ = 1;
for (int i = arithmeticParameter_->ndim_ - 1; i >= 0; --i) {
if (arithmeticParameter_->in_shape0_[i] != arithmeticParameter_->in_shape1_[i]) {
break_pos_ = i;
break;
}
outside_ *= arithmeticParameter_->out_shape_[i];
}
ComputeStrides(arithmeticParameter_->in_shape0_, arithmeticParameter_->in_strides0_, arithmeticParameter_->ndim_);
ComputeStrides(arithmeticParameter_->in_shape1_, arithmeticParameter_->in_strides1_, arithmeticParameter_->ndim_);
ComputeStrides(arithmeticParameter_->out_shape_, arithmeticParameter_->out_strides_, arithmeticParameter_->ndim_);
}
return RET_OK;
}
......@@ -344,10 +305,8 @@ int ArithmeticFP16CPUKernel::DoArithmetic(int task_id) {
int error_code = RET_OK;
if (arithmeticParameter_->broadcasting_) {
stride = UP_DIV(outside_, context_->thread_num_);
out_count_ = MSMIN(stride, outside_ - stride * task_id);
out_thread_stride_ = stride * task_id;
error_code = broadcast_run_(input0_data, input1_data1, output_data, 0);
error_code =
arithmetic_run_(tile_data0_ + thread_stride, tile_data1_ + thread_stride, output_data + thread_stride, count);
} else if (arithmetic_opt_run_ != nullptr) {
if (arithmeticParameter_->in_elements_num0_ == 1) {
error_code = arithmetic_opt_run_(input0_data, input1_data1 + thread_stride, output_data + thread_stride, count,
......@@ -364,6 +323,7 @@ int ArithmeticFP16CPUKernel::DoArithmetic(int task_id) {
arithmetic_run_(input0_data + thread_stride, input1_data1 + thread_stride, output_data + thread_stride, count);
}
if (error_code != RET_OK) {
FreeTmpBuffer();
return RET_ERROR;
}
if (output_fp16_ != nullptr) {
......@@ -390,6 +350,37 @@ int ArithmeticFP16CPUKernel::Run() {
return ret;
}
arithmeticParameter_->in_elements_num0_ = in_tensors_[0]->ElementsNum();
arithmeticParameter_->in_elements_num1_ = in_tensors_[1]->ElementsNum();
arithmeticParameter_->out_elements_num_ = out_tensors_[0]->ElementsNum();
if (in_tensors_[0]->data_type() == kNumberTypeFloat32 || in_tensors_[0]->data_type() == kNumberTypeFloat) {
input0_fp16_ = reinterpret_cast<float16_t *>(
context_->allocator->Malloc(arithmeticParameter_->in_elements_num0_ * sizeof(float16_t)));
if (input0_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
FreeTmpBuffer();
return RET_ERROR;
}
}
if (in_tensors_[1]->data_type() == kNumberTypeFloat32 || in_tensors_[1]->data_type() == kNumberTypeFloat) {
input1_fp16_ = reinterpret_cast<float16_t *>(
context_->allocator->Malloc(arithmeticParameter_->in_elements_num1_ * sizeof(float16_t)));
if (input0_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
FreeTmpBuffer();
return RET_ERROR;
}
}
if (out_tensors_[0]->data_type() == kNumberTypeFloat32 || out_tensors_[0]->data_type() == kNumberTypeFloat) {
output_fp16_ = reinterpret_cast<float16_t *>(
context_->allocator->Malloc(arithmeticParameter_->out_elements_num_ * sizeof(float16_t)));
if (output_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
FreeTmpBuffer();
return RET_ERROR;
}
}
if (in_tensors_[0]->data_type() == kNumberTypeFloat32 || in_tensors_[0]->data_type() == kNumberTypeFloat) {
Float32ToFloat16(reinterpret_cast<float *>(in_tensors_[0]->Data()), input0_fp16_,
arithmeticParameter_->in_elements_num0_);
......@@ -399,9 +390,33 @@ int ArithmeticFP16CPUKernel::Run() {
arithmeticParameter_->in_elements_num1_);
}
if (arithmeticParameter_->broadcasting_) {
auto tile_size = arithmeticParameter_->out_elements_num_ * sizeof(float16_t);
tile_data0_ = reinterpret_cast<float16_t *>(malloc(tile_size));
if (tile_data0_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
FreeTmpBuffer();
return RET_ERROR;
}
tile_data1_ = reinterpret_cast<float16_t *>(malloc(tile_size));
if (tile_data1_ == nullptr) {
MS_LOG(ERROR) << "malloc data fail!";
FreeTmpBuffer();
return RET_ERROR;
}
auto input0 = reinterpret_cast<float16_t *>(in_tensors_[0]->Data());
auto input1 = reinterpret_cast<float16_t *>(in_tensors_[1]->Data());
float16_t *input0_data = input0_fp16_ == nullptr ? input0 : input0_fp16_;
float16_t *input1_data1 = input1_fp16_ == nullptr ? input1 : input1_fp16_;
TileDimensionsFp16(input0_data, input1_data1, tile_data0_, tile_data1_, arithmeticParameter_);
}
ret = LiteBackendParallelLaunch(ArithmeticsRun, this, context_->thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Arithmetic function fail!ret: " << ret;
FreeTmpBuffer();
return ret;
}
return RET_OK;
......
......@@ -18,6 +18,33 @@
#include <math.h>
#include "nnacl/arithmetic_common.h"
void TileOneDimensionFp16(float16_t *inData, float16_t *outData, int dim, size_t ndim, int *inShape, int *inStrides,
int *outStrides, int *multiple) {
int srcDimSize = inShape[dim];
if (dim == ndim - 1) {
for (int i = 0; i < multiple[dim]; i++) {
memcpy(outData, inData, srcDimSize * sizeof(float16_t));
outData += srcDimSize;
}
return;
}
for (size_t i = 0; i < srcDimSize; i++) {
for (size_t j = 0; j < multiple[dim]; j++) {
TileOneDimensionFp16(inData + inStrides[dim] * i, outData + outStrides[dim] * (i + j * srcDimSize), dim + 1, ndim,
inShape, inStrides, outStrides, multiple);
}
}
}
void TileDimensionsFp16(float16_t *data0, float16_t *data1, float16_t *tile_data0, float16_t *tile_data1,
ArithmeticParameter *param) {
CalcMultiplesAndStrides(param);
TileOneDimensionFp16(data0, tile_data0, 0, param->ndim_, param->in_shape0_, param->in_strides0_, param->out_strides_,
param->multiples0_);
TileOneDimensionFp16(data1, tile_data1, 0, param->ndim_, param->in_shape1_, param->in_strides1_, param->out_strides_,
param->multiples1_);
}
int ElementMulFp16(float16_t *input0, float16_t *input1, float16_t *output, int element_size) {
int block_mod = element_size % C8NUM;
int block_c8 = element_size - block_mod;
......
......@@ -111,6 +111,8 @@ int ElementLessEqual(float16_t *input0, float16_t *input1, float16_t *output, in
int ElementGreaterFp16(float16_t *input0, float16_t *input1, float16_t *output, int element_size);
int ElementGreaterEqualFp16(float16_t *input0, float16_t *input1, float16_t *output, int element_size);
void TileDimensionsFp16(float16_t *data0, float16_t *data1, float16_t *tile_data0, float16_t *tile_data1,
ArithmeticParameter *param);
#ifdef __cplusplus
}
#endif
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册