提交 4a76059f 编写于 作者: C chengxianbin

fix quant export bug

上级 3fb58fcb
......@@ -607,7 +607,6 @@ class Conv2dBnWithoutFoldQuant(Cell):
group (int): Split filter into groups, `in_ channels` and `out_channels` should be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
has_bn (bool): Specifies to used batchnorm or not. Default: False.
eps (float): Parameters for BatchNormal. Default: 1e-5.
momentum (float): Parameters for BatchNormal op. Default: 0.997.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
......@@ -641,7 +640,6 @@ class Conv2dBnWithoutFoldQuant(Cell):
dilation=1,
group=1,
has_bias=False,
has_bn=True,
eps=1e-5,
momentum=0.997,
weight_init='normal',
......@@ -693,17 +691,14 @@ class Conv2dBnWithoutFoldQuant(Cell):
symmetric=symmetric,
narrow_range=narrow_range,
quant_delay=quant_delay)
self.has_bn = validator.check_bool("has_bn", has_bn)
if has_bn:
self.batchnorm = BatchNorm2d(out_channels, eps=eps, momentum=momentum)
self.batchnorm = BatchNorm2d(out_channels, eps=eps, momentum=momentum)
def construct(self, x):
weight = self.fake_quant_weight(self.weight)
out = self.conv(x, weight)
if self.has_bias:
out = self.bias_add(out, self.bias)
if self.has_bn:
out = self.batchnorm(out)
out = self.batchnorm(out)
return out
def extend_repr(self):
......
......@@ -208,7 +208,6 @@ class ConvertToQuantNetwork:
group=conv_inner.group,
eps=bn_inner.eps,
momentum=bn_inner.momentum,
has_bn=True,
quant_delay=self.weight_qdelay,
per_channel=self.weight_channel,
num_bits=self.weight_bits,
......@@ -378,8 +377,10 @@ class ExportToQuantInferNetwork:
if isinstance(cell_core, (quant.DenseQuant, quant.Conv2dQuant)):
if cell_core.has_bias:
bias = cell_core.bias.data.asnumpy()
elif isinstance(cell_core, (quant.Conv2dBnFoldQuant, quant.Conv2dBnWithoutFoldQuant)):
elif isinstance(cell_core, quant.Conv2dBnFoldQuant):
weight, bias = quant_utils.fold_batchnorm(weight, cell_core)
elif isinstance(cell_core, quant.Conv2dBnWithoutFoldQuant):
weight, bias = quant_utils.without_fold_batchnorm(weight, cell_core)
# apply the quant
weight = quant_utils.weight2int(weight, scale_w, zp_w)
......
......@@ -211,3 +211,42 @@ def fold_batchnorm(weight, cell_quant):
weight = weight * _gamma / _sigma
bias = beta - gamma * mean / sigma
return weight, bias
def without_fold_batchnorm(weight, cell_quant):
r"""
Fold the batchnorm in `Conv2dBnWithoutFoldQuant` to weight.
Calculate from `FakeQuantWithMinMax`'s Parameter or Fake quant primitive.
Args:
weight (numpy.ndarray): Weight of `cell_quant`.
cell_quant (Cell): Object of `mindspore.nn.layer.Conv2dBnWithoutFoldQuant`.
Returns:
weight (numpy.ndarray): whihout folded weight.
bias (numpy.ndarray): without folded bias.
"""
variance = cell_quant.batchnorm.moving_variance.data.asnumpy()
mean = cell_quant.batchnorm.moving_mean.data.asnumpy()
gamma = cell_quant.batchnorm.gamma.data.asnumpy()
beta = cell_quant.batchnorm.beta.data.asnumpy()
epsilon = cell_quant.batchnorm.eps
sigma = np.sqrt(variance + epsilon)
if gamma.shape[0] == weight.shape[0]:
# `Conv2d` or `Dense` op weight
shape_list = [-1] + [1] * len(weight.shape[1:])
_gamma = gamma.reshape(shape_list)
_sigma = sigma.reshape(shape_list)
elif gamma.shape[0] == weight.shape[1]:
# `DepthwiseConv2d` op weight
shape_list = [1, -1] + [1] * len(weight.shape[2:])
_gamma = gamma.reshape(shape_list)
_sigma = sigma.reshape(shape_list)
else:
raise ValueError("Unsupported weight shape({})".format(weight.shape))
weight = weight * _gamma / _sigma
bias = beta - gamma * mean / sigma
return weight, bias
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册