Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
4a0ddaef
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a0ddaef
编写于
5月 08, 2020
作者:
Y
yujianfeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support specifying reshape type for batchnorm fused op
上级
b45b6a9f
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
81 addition
and
23 deletion
+81
-23
mindspore/ccsrc/kernel/tbe/tbe_kernel_select.cc
mindspore/ccsrc/kernel/tbe/tbe_kernel_select.cc
+44
-5
mindspore/ccsrc/pre_activate/ascend/ascend_helper.cc
mindspore/ccsrc/pre_activate/ascend/ascend_helper.cc
+17
-6
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_grad_split.cc
...c/pre_activate/ascend/ir_fission/batch_norm_grad_split.cc
+0
-1
mindspore/ccsrc/pre_activate/common/helper.cc
mindspore/ccsrc/pre_activate/common/helper.cc
+1
-1
mindspore/ccsrc/session/anf_runtime_algorithm.cc
mindspore/ccsrc/session/anf_runtime_algorithm.cc
+5
-0
mindspore/ccsrc/session/anf_runtime_algorithm.h
mindspore/ccsrc/session/anf_runtime_algorithm.h
+2
-0
mindspore/ccsrc/utils/utils.h
mindspore/ccsrc/utils/utils.h
+4
-2
mindspore/ops/_op_impl/tbe/bn_training_reduce.py
mindspore/ops/_op_impl/tbe/bn_training_reduce.py
+1
-1
mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py
mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py
+3
-3
mindspore/ops/_op_impl/tbe/bn_training_update.py
mindspore/ops/_op_impl/tbe/bn_training_update.py
+2
-2
mindspore/ops/_op_impl/tbe/bn_training_update_grad.py
mindspore/ops/_op_impl/tbe/bn_training_update_grad.py
+2
-2
未找到文件。
mindspore/ccsrc/kernel/tbe/tbe_kernel_select.cc
浏览文件 @
4a0ddaef
...
...
@@ -321,9 +321,11 @@ void ReplaceByDynamicFormatDtype(const CNodePtr &kernel_node, const std::shared_
MS_LOG
(
INFO
)
<<
"Dynamic select format response successful, use dynamic format."
;
for
(
size_t
i
=
0
;
i
<
inputs_static
.
size
();
i
++
)
{
inputs_dyn
[
i
]
->
set_param_type
(
inputs_static
[
i
]
->
param_type
());
inputs_dyn
[
i
]
->
set_reshape_type
(
inputs_static
[
i
]
->
reshape_type
());
}
for
(
size_t
j
=
0
;
j
<
outputs_static
.
size
();
j
++
)
{
outputs_dyn
[
j
]
->
set_param_type
(
outputs_static
[
j
]
->
param_type
());
outputs_dyn
[
j
]
->
set_reshape_type
(
outputs_static
[
j
]
->
reshape_type
());
}
op_info_new_ptr
->
set_inputs_ptr
(
inputs_dyn
);
op_info_new_ptr
->
set_outputs_ptr
(
outputs_dyn
);
...
...
@@ -335,6 +337,29 @@ void ReplaceByDynamicFormatDtype(const CNodePtr &kernel_node, const std::shared_
op_info_new_ptr
->
set_fusion_type
(
op_info_ptr
->
fusion_type
());
}
bool
StringToAxisVector
(
const
std
::
string
&
reshape_type_str
,
std
::
vector
<
Axis
>
*
reshape_type_vec
)
{
for
(
const
auto
&
c
:
reshape_type_str
)
{
switch
(
c
)
{
case
'N'
:
reshape_type_vec
->
push_back
(
kernel
::
N
);
break
;
case
'C'
:
reshape_type_vec
->
push_back
(
kernel
::
C
);
break
;
case
'H'
:
reshape_type_vec
->
push_back
(
kernel
::
H
);
break
;
case
'W'
:
reshape_type_vec
->
push_back
(
kernel
::
W
);
break
;
default:
MS_LOG
(
ERROR
)
<<
"Unknown axis "
<<
c
<<
"in reshape type."
;
return
false
;
}
}
return
true
;
}
bool
SetKernelBuilderInputInfo
(
const
std
::
vector
<
std
::
shared_ptr
<
OpIOInfo
>>
&
inputs
,
size_t
real_input_num
,
size_t
builder_idex
,
const
std
::
vector
<
int
>
&
dyn_input_sizes
,
const
std
::
shared_ptr
<
KernelBuildInfo
::
KernelBuildInfoBuilder
>
&
builder
)
{
...
...
@@ -347,6 +372,7 @@ bool SetKernelBuilderInputInfo(const std::vector<std::shared_ptr<OpIOInfo>> &inp
MS_EXCEPTION_IF_NULL
(
inputs
[
0
]);
size_t
kernel_info_cnt
=
inputs
[
0
]
->
dtypes
().
size
();
std
::
vector
<
std
::
vector
<
Axis
>>
reshape_types
;
for
(
const
auto
&
input
:
inputs
)
{
MS_EXCEPTION_IF_NULL
(
input
);
std
::
string
param_type
=
input
->
param_type
();
...
...
@@ -384,8 +410,14 @@ bool SetKernelBuilderInputInfo(const std::vector<std::shared_ptr<OpIOInfo>> &inp
inputs_format
.
push_back
(
formats
[
builder_idex
]);
}
}
std
::
vector
<
Axis
>
reshape_type
;
if
(
!
StringToAxisVector
(
input
->
reshape_type
(),
&
reshape_type
))
{
return
false
;
}
reshape_types
.
push_back
(
reshape_type
);
}
builder
->
SetInputReshapeType
(
reshape_types
);
builder
->
SetInputsDeviceType
(
inputs_device_type
);
builder
->
SetInputsFormat
(
inputs_format
);
return
true
;
...
...
@@ -403,6 +435,7 @@ bool SetKernelBuilderOutputInfo(const std::vector<std::shared_ptr<OpIOInfo>> &ou
MS_EXCEPTION_IF_NULL
(
outputs
[
0
]);
size_t
kernel_info_cnt
=
outputs
[
0
]
->
dtypes
().
size
();
std
::
vector
<
std
::
vector
<
Axis
>>
reshape_types
;
for
(
const
auto
&
output
:
outputs
)
{
MS_EXCEPTION_IF_NULL
(
output
);
if
(
output_idx
>=
real_output_num
)
{
...
...
@@ -436,8 +469,14 @@ bool SetKernelBuilderOutputInfo(const std::vector<std::shared_ptr<OpIOInfo>> &ou
outputs_format
.
push_back
(
formats
[
builder_idex
]);
output_idx
++
;
}
std
::
vector
<
Axis
>
reshape_type
;
if
(
!
StringToAxisVector
(
output
->
reshape_type
(),
&
reshape_type
))
{
return
false
;
}
reshape_types
.
push_back
(
reshape_type
);
}
builder
->
SetOutputReshapeType
(
reshape_types
);
builder
->
SetOutputsFormat
(
outputs_format
);
builder
->
SetOutputsDeviceType
(
outputs_device_type
);
return
true
;
...
...
@@ -515,7 +554,7 @@ bool IsShapeMatchFormat(const std::vector<size_t> &shape, const std::string &for
const
std
::
set
<
std
::
string
>
kOpFormatList
=
{
kOpFormat_DEFAULT
,
kOpFormat_NC1KHKWHWC0
,
kOpFormat_ND
,
kOpFormat_NCHW
,
kOpFormat_NHWC
,
kOpFormat_HWCN
,
kOpFormat_NC1HWC0
,
kOpFormat_FRAC_Z
,
kOpFormat_C1HWNCoC0
,
kOpFormat_FRAC_NZ
,
kOpFormat_NC1HWC0_C04
};
kOpFormat_FRAC_NZ
,
kOpFormat_NC1HWC0_C04
,
kOpFormat_FRACTAL_Z_C04
};
// if format is default, it remarkes support all format
if
(
kOpFormatList
.
find
(
format
)
==
kOpFormatList
.
end
())
{
...
...
@@ -528,13 +567,13 @@ bool IsShapeMatchFormat(const std::vector<size_t> &shape, const std::string &for
if
(
shape
.
empty
())
{
return
true
;
}
if
(
shape
.
size
()
>
kShape
SupportFormatMap
.
size
()
)
{
if
(
shape
.
size
()
>
kShape
4dDims
)
{
return
false
;
}
if
(
format
==
kOpFormat_FRAC_NZ
&&
shape
.
size
()
>=
2
)
{
return
tru
e
;
if
(
format
==
kOpFormat_FRAC_NZ
&&
shape
.
size
()
<
2
)
{
return
fals
e
;
}
return
!
(
kShapeSupportFormatMap
[
shape
.
size
()
-
1
].
find
(
format
)
==
kShapeSupportFormatMap
[
shape
.
size
()
-
1
].
end
())
;
return
true
;
}
bool
IsValidKernelInfo
(
const
std
::
shared_ptr
<
CNode
>
&
kernel_node
,
const
kernel
::
KernelBuildInfo
&
kernel_build_info
)
{
...
...
mindspore/ccsrc/pre_activate/ascend/ascend_helper.cc
浏览文件 @
4a0ddaef
...
...
@@ -55,12 +55,17 @@ CNodePtr NewTransOpNode(const FuncGraphPtr &func_graph, const AnfNodePtr &input,
trans_inputs
.
push_back
(
input
);
CNodePtr
trans_node
=
func_graph
->
NewCNode
(
trans_inputs
);
MS_EXCEPTION_IF_NULL
(
trans_node
);
std
::
vector
<
kernel
::
Axis
>
padding_axis
;
if
(
AnfAlgo
::
IsRealKernel
(
input
))
{
padding_axis
=
AnfAlgo
::
GetOutputReshapeType
(
input
,
0
);
}
else
{
padding_axis
=
AnfAlgo
::
GetPrevNodeOutputReshapeType
(
input
,
0
);
}
if
(
need_padding
)
{
// if need padding we should set the transdata node's shape to the padding shape
AnfAlgo
::
SetOutputInferTypeAndShape
(
{
AnfAlgo
::
GetOutputInferDataType
(
input
,
0
)},
{
trans
::
PaddingShapeTo4d
(
AnfAlgo
::
GetOutputInferShape
(
input
,
0
),
AnfAlgo
::
GetOutputReshapeType
(
input
,
0
))},
trans_node
.
get
());
AnfAlgo
::
SetOutputInferTypeAndShape
({
AnfAlgo
::
GetOutputInferDataType
(
input
,
0
)},
{
trans
::
PaddingShapeTo4d
(
AnfAlgo
::
GetOutputInferShape
(
input
,
0
),
padding_axis
)},
trans_node
.
get
());
}
else
{
AnfAlgo
::
SetOutputInferTypeAndShape
({
AnfAlgo
::
GetOutputInferDataType
(
input
,
0
)},
{
AnfAlgo
::
GetOutputInferShape
(
input
,
0
)},
trans_node
.
get
());
...
...
@@ -194,8 +199,14 @@ AnfNodePtr AddTransOpNodeToGraph(const FuncGraphPtr &func_graph, const AnfNodePt
MS_EXCEPTION_IF_NULL
(
cnode
);
input_node
=
AnfAlgo
::
GetInputNode
(
cnode
,
insert_index
);
}
bool
need_padding
=
(
trans
::
IsNeedPadding
(
dest_format
,
AnfAlgo
::
GetOutputInferShape
(
input_node
,
0
).
size
())
&&
op_name
==
kTransDataOpName
);
bool
need_padding
=
false
;
if
(
is_insert_input
)
{
need_padding
=
(
trans
::
IsNeedPadding
(
dest_format
,
AnfAlgo
::
GetOutputInferShape
(
input_node
,
0
).
size
())
&&
op_name
==
kTransDataOpName
);
}
else
{
need_padding
=
(
trans
::
IsNeedPadding
(
origin_format
,
AnfAlgo
::
GetOutputInferShape
(
input_node
,
0
).
size
())
&&
op_name
==
kTransDataOpName
);
}
if
(
!
need_padding
)
{
// don't need padding insert transdata only
trans_data
=
NewTransOpNode
(
func_graph
,
input_node
,
kernel_select
,
need_padding
,
op_name
);
...
...
mindspore/ccsrc/pre_activate/ascend/ir_fission/batch_norm_grad_split.cc
浏览文件 @
4a0ddaef
...
...
@@ -86,7 +86,6 @@ void CreateOutputsOfReduceGrad(const FuncGraphPtr &graph, const CNodePtr &bn_gra
AnfAlgo
::
CopyNodeAttr
(
kAttrEpsilon
,
bn_grad_node
,
bn_reduce_grad
);
(
*
bn_reduce_grad_outputs
).
push_back
(
bn_reduce_grad
);
}
}
// namespace
const
BaseRef
BatchNormGradSplit
::
DefinePattern
()
const
{
VarPtr
Xs
=
std
::
make_shared
<
SeqVar
>
();
...
...
mindspore/ccsrc/pre_activate/common/helper.cc
浏览文件 @
4a0ddaef
...
...
@@ -344,7 +344,7 @@ bool IsNopNode(const AnfNodePtr &node) {
return
true
;
}
bool
IsAllNopNode
(
session
::
KernelGraph
*
const
graph
)
{
bool
IsAllNopNode
(
const
session
::
KernelGraph
*
const
graph
)
{
MS_EXCEPTION_IF_NULL
(
graph
);
auto
execution_order
=
graph
->
execution_order
();
for
(
auto
&
cnode
:
execution_order
)
{
...
...
mindspore/ccsrc/session/anf_runtime_algorithm.cc
浏览文件 @
4a0ddaef
...
...
@@ -347,6 +347,11 @@ std::string AnfRuntimeAlgorithm::GetPrevNodeOutputFormat(const AnfNodePtr &anf_n
return
AnfRuntimeAlgorithm
::
GetOutputFormat
(
kernel_with_index
.
first
,
kernel_with_index
.
second
);
}
std
::
vector
<
kernel
::
Axis
>
AnfRuntimeAlgorithm
::
GetPrevNodeOutputReshapeType
(
const
AnfNodePtr
&
node
,
size_t
input_idx
)
{
KernelWithIndex
kernel_with_index
=
AnfAlgo
::
GetPrevNodeOutput
(
node
,
input_idx
);
return
GetOutputReshapeType
(
kernel_with_index
.
first
,
kernel_with_index
.
second
);
}
std
::
vector
<
size_t
>
AnfRuntimeAlgorithm
::
GetOutputInferShape
(
const
AnfNodePtr
&
node
,
size_t
output_idx
)
{
MS_EXCEPTION_IF_NULL
(
node
);
abstract
::
BaseShapePtr
base_shape
=
node
->
Shape
();
...
...
mindspore/ccsrc/session/anf_runtime_algorithm.h
浏览文件 @
4a0ddaef
...
...
@@ -95,6 +95,8 @@ class AnfRuntimeAlgorithm {
static
KernelWithIndex
GetPrevNodeOutput
(
const
AnfNodePtr
&
anf_node
,
size_t
input_idx
);
// get output format from prev node,input_index is the input index of current node related to prev node
static
std
::
string
GetPrevNodeOutputFormat
(
const
AnfNodePtr
&
node
,
size_t
input_idx
);
// get reshape_type of from the output of input node.
static
std
::
vector
<
kernel
::
Axis
>
GetPrevNodeOutputReshapeType
(
const
AnfNodePtr
&
node
,
size_t
input_idx
);
// get output shapes inferred by ME from input nodes.
static
std
::
vector
<
size_t
>
GetOutputInferShape
(
const
AnfNodePtr
&
node
,
size_t
output_idx
);
// get input shapes inferred by ME from input nodes.
...
...
mindspore/ccsrc/utils/utils.h
浏览文件 @
4a0ddaef
...
...
@@ -204,6 +204,7 @@ constexpr auto kOpFormat_FRAC_Z = "FracZ";
constexpr
auto
kOpFormat_FRAC_NZ
=
"FRACTAL_NZ"
;
constexpr
auto
kOpFormat_C1HWNCoC0
=
"C1HWNCoC0"
;
constexpr
auto
kOpFormat_NC1HWC0_C04
=
"NC1HWC0_C04"
;
constexpr
auto
kOpFormat_FRACTAL_Z_C04
=
"FRACTAL_Z_C04"
;
const
std
::
set
<
std
::
string
>
k1DSupportFormat
=
{
kOpFormat_DEFAULT
,
kOpFormat_NCHW
,
kOpFormat_NHWC
,
kOpFormat_FRAC_Z
,
kOpFormat_NC1KHKWHWC0
,
kOpFormat_NC1HWC0
,
kOpFormat_C1HWNCoC0
};
...
...
@@ -225,8 +226,9 @@ const std::set<std::string> kOptOperatorSet = {
kApplyRMSPropOpName
,
};
const
std
::
set
<
std
::
string
>
kNeedTransFormatSet
=
{
kOpFormat_FRAC_Z
,
kOpFormat_NC1KHKWHWC0
,
kOpFormat_NC1HWC0
,
kOpFormat_FRAC_NZ
,
kOpFormat_C1HWNCoC0
};
const
std
::
set
<
std
::
string
>
kNeedTransFormatSet
=
{
kOpFormat_FRAC_Z
,
kOpFormat_NC1KHKWHWC0
,
kOpFormat_NC1HWC0
,
kOpFormat_FRAC_NZ
,
kOpFormat_C1HWNCoC0
,
kOpFormat_NC1HWC0_C04
,
kOpFormat_FRACTAL_Z_C04
};
static
inline
void
ChangeFileMode
(
const
std
::
string
&
file_name
,
mode_t
mode
)
{
if
(
access
(
file_name
.
c_str
(),
F_OK
)
!=
0
)
{
...
...
mindspore/ops/_op_impl/tbe/bn_training_reduce.py
浏览文件 @
4a0ddaef
...
...
@@ -23,7 +23,7 @@ bn_training_reduce_op_info = TBERegOp("BNTrainingReduce") \
.
compute_cost
(
10
)
\
.
kernel_name
(
"bn_training_reduce"
)
\
.
partial_flag
(
True
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
output
(
0
,
"sum"
,
False
,
"required"
,
"all"
)
\
.
output
(
1
,
"square_sum"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
)
\
...
...
mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py
浏览文件 @
4a0ddaef
...
...
@@ -24,14 +24,14 @@ bn_training_reduce_grad_op_info = TBERegOp("BNTrainingReduceGrad") \
.
kernel_name
(
"bn_training_reduce_grad"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"epsilon"
,
"optional"
,
"float"
,
"all"
)
\
.
input
(
0
,
"grads"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"x_norm"
,
False
,
"required"
,
"all"
)
\
.
input
(
0
,
"grads"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
input
(
1
,
"x_norm"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
input
(
2
,
"diff_scale"
,
False
,
"required"
,
"all"
)
\
.
input
(
3
,
"diff_offset"
,
False
,
"required"
,
"all"
)
\
.
input
(
4
,
"scale"
,
False
,
"required"
,
"all"
)
\
.
input
(
5
,
"batch_mean"
,
False
,
"required"
,
"all"
)
\
.
input
(
6
,
"batch_variance"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
dtype_format
(
DataType
.
F16_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F16_5HD
)
\
.
dtype_format
(
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
DataType
.
F32_5HD
,
...
...
mindspore/ops/_op_impl/tbe/bn_training_update.py
浏览文件 @
4a0ddaef
...
...
@@ -26,14 +26,14 @@ bn_training_update_op_info = TBERegOp("BNTrainingUpdate") \
.
attr
(
"factor"
,
"optional"
,
"float"
,
"all"
)
\
.
attr
(
"epsilon"
,
"optional"
,
"float"
,
"all"
)
\
.
attr
(
"isRef"
,
"optional"
,
"bool"
,
"all"
,
"true"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
input
(
1
,
"sum"
,
False
,
"required"
,
"all"
)
\
.
input
(
2
,
"square_sum"
,
False
,
"required"
,
"all"
)
\
.
input
(
3
,
"scale"
,
False
,
"required"
,
"all"
)
\
.
input
(
4
,
"offset"
,
False
,
"required"
,
"all"
)
\
.
input
(
5
,
"mean"
,
False
,
"required"
,
"all"
)
\
.
input
(
6
,
"variance"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
output
(
1
,
"mean"
,
False
,
"required"
,
"all"
)
\
.
output
(
2
,
"variance"
,
False
,
"required"
,
"all"
)
\
.
output
(
3
,
"batch_mean"
,
False
,
"required"
,
"all"
)
\
...
...
mindspore/ops/_op_impl/tbe/bn_training_update_grad.py
浏览文件 @
4a0ddaef
...
...
@@ -24,8 +24,8 @@ bn_training_update_grad_op_info = TBERegOp("BNTrainingUpdateGrad") \
.
kernel_name
(
"bn_training_update_grad"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"epsilon"
,
"optional"
,
"float"
,
"all"
)
\
.
input
(
0
,
"grads"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
0
,
"grads"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
input
(
1
,
"x"
,
False
,
"required"
,
"all"
,
reshape_type
=
"NC"
)
\
.
input
(
2
,
"batch_mean"
,
False
,
"required"
,
"all"
)
\
.
input
(
3
,
"batch_variance"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"diff_scale"
,
False
,
"required"
,
"all"
)
\
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录