Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
45dbc8bf
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
45dbc8bf
编写于
7月 10, 2020
作者:
P
panbingao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move model_zoo.resnet.py
上级
b4e37158
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
286 addition
and
5 deletion
+286
-5
cmake/package.cmake
cmake/package.cmake
+0
-1
mindspore/model_zoo/__init__.py
mindspore/model_zoo/__init__.py
+0
-0
tests/st/networks/models/resnet50/src/resnet.py
tests/st/networks/models/resnet50/src/resnet.py
+0
-0
tests/st/networks/models/resnet50/test_resnet50_imagenet.py
tests/st/networks/models/resnet50/test_resnet50_imagenet.py
+1
-1
tests/ut/cpp/python_input/gtest_input/optimizer/ad/ad_test.py
...s/ut/cpp/python_input/gtest_input/optimizer/ad/ad_test.py
+1
-1
tests/ut/cpp/python_input/gtest_input/pipeline/parse/parser_integrate.py
...thon_input/gtest_input/pipeline/parse/parser_integrate.py
+1
-1
tests/ut/python/model/resnet.py
tests/ut/python/model/resnet.py
+282
-0
tests/ut/python/train/test_amp.py
tests/ut/python/train/test_amp.py
+1
-1
未找到文件。
cmake/package.cmake
浏览文件 @
45dbc8bf
...
...
@@ -210,7 +210,6 @@ install(
${
CMAKE_SOURCE_DIR
}
/mindspore/parallel
${
CMAKE_SOURCE_DIR
}
/mindspore/mindrecord
${
CMAKE_SOURCE_DIR
}
/mindspore/train
${
CMAKE_SOURCE_DIR
}
/mindspore/model_zoo
${
CMAKE_SOURCE_DIR
}
/mindspore/common
${
CMAKE_SOURCE_DIR
}
/mindspore/ops
${
CMAKE_SOURCE_DIR
}
/mindspore/communication
...
...
mindspore/model_zoo/__init__.py
已删除
100644 → 0
浏览文件 @
b4e37158
mindspore/model_zoo
/resnet.py
→
tests/st/networks/models/resnet50/src
/resnet.py
100755 → 100644
浏览文件 @
45dbc8bf
文件已移动
tests/st/networks/models/resnet50/test_resnet50_imagenet.py
浏览文件 @
45dbc8bf
...
...
@@ -27,10 +27,10 @@ from mindspore.parallel._auto_parallel_context import auto_parallel_context
from
mindspore.train.model
import
Model
,
ParallelMode
from
mindspore.train.callback
import
Callback
from
mindspore.train.loss_scale_manager
import
FixedLossScaleManager
from
mindspore.model_zoo.resnet
import
resnet50
import
mindspore.nn
as
nn
import
mindspore.dataset
as
ds
from
tests.st.networks.models.resnet50.src.resnet
import
resnet50
from
tests.st.networks.models.resnet50.src.dataset
import
create_dataset
from
tests.st.networks.models.resnet50.src.lr_generator
import
get_learning_rate
from
tests.st.networks.models.resnet50.src.config
import
config
...
...
tests/ut/cpp/python_input/gtest_input/optimizer/ad/ad_test.py
浏览文件 @
45dbc8bf
...
...
@@ -17,8 +17,8 @@ import numpy as np
import
mindspore
as
ms
from
mindspore.common.tensor
import
Tensor
from
mindspore.model_zoo.resnet
import
resnet50
from
mindspore.ops
import
Primitive
from
tests.ut.python.model.resnet
import
resnet50
scala_add
=
Primitive
(
'scalar_add'
)
...
...
tests/ut/cpp/python_input/gtest_input/pipeline/parse/parser_integrate.py
浏览文件 @
45dbc8bf
...
...
@@ -22,9 +22,9 @@ from mindspore.common import dtype
from
mindspore.common.api
import
ms_function
,
_executor
from
mindspore.common.parameter
import
Parameter
from
mindspore.common.tensor
import
Tensor
from
mindspore.model_zoo.resnet
import
resnet50
from
mindspore.ops
import
functional
as
F
from
mindspore.train.model
import
Model
from
tests.ut.python.model.resnet
import
resnet50
def
test_high_order_function
(
a
):
...
...
tests/ut/python/model/resnet.py
0 → 100644
浏览文件 @
45dbc8bf
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ResNet."""
import
numpy
as
np
import
mindspore.nn
as
nn
from
mindspore.ops
import
operations
as
P
from
mindspore.common.tensor
import
Tensor
def
_weight_variable
(
shape
,
factor
=
0.01
):
init_value
=
np
.
random
.
randn
(
*
shape
).
astype
(
np
.
float32
)
*
factor
return
Tensor
(
init_value
)
def
_conv3x3
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
3
,
3
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_conv1x1
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
1
,
1
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
1
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_conv7x7
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
7
,
7
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
7
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_bn
(
channel
):
return
nn
.
BatchNorm2d
(
channel
,
eps
=
1e-4
,
momentum
=
0.9
,
gamma_init
=
1
,
beta_init
=
0
,
moving_mean_init
=
0
,
moving_var_init
=
1
)
def
_bn_last
(
channel
):
return
nn
.
BatchNorm2d
(
channel
,
eps
=
1e-4
,
momentum
=
0.9
,
gamma_init
=
0
,
beta_init
=
0
,
moving_mean_init
=
0
,
moving_var_init
=
1
)
def
_fc
(
in_channel
,
out_channel
):
weight_shape
=
(
out_channel
,
in_channel
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Dense
(
in_channel
,
out_channel
,
has_bias
=
True
,
weight_init
=
weight
,
bias_init
=
0
)
class
ResidualBlock
(
nn
.
Cell
):
"""
ResNet V1 residual block definition.
Args:
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, stride=2)
"""
expansion
=
4
def
__init__
(
self
,
in_channel
,
out_channel
,
stride
=
1
):
super
(
ResidualBlock
,
self
).
__init__
()
channel
=
out_channel
//
self
.
expansion
self
.
conv1
=
_conv1x1
(
in_channel
,
channel
,
stride
=
1
)
self
.
bn1
=
_bn
(
channel
)
self
.
conv2
=
_conv3x3
(
channel
,
channel
,
stride
=
stride
)
self
.
bn2
=
_bn
(
channel
)
self
.
conv3
=
_conv1x1
(
channel
,
out_channel
,
stride
=
1
)
self
.
bn3
=
_bn_last
(
out_channel
)
self
.
relu
=
nn
.
ReLU
()
self
.
down_sample
=
False
if
stride
!=
1
or
in_channel
!=
out_channel
:
self
.
down_sample
=
True
self
.
down_sample_layer
=
None
if
self
.
down_sample
:
self
.
down_sample_layer
=
nn
.
SequentialCell
([
_conv1x1
(
in_channel
,
out_channel
,
stride
),
_bn
(
out_channel
)])
self
.
add
=
P
.
TensorAdd
()
def
construct
(
self
,
x
):
identity
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv3
(
out
)
out
=
self
.
bn3
(
out
)
if
self
.
down_sample
:
identity
=
self
.
down_sample_layer
(
identity
)
out
=
self
.
add
(
out
,
identity
)
out
=
self
.
relu
(
out
)
return
out
class
ResNet
(
nn
.
Cell
):
"""
ResNet architecture.
Args:
block (Cell): Block for network.
layer_nums (list): Numbers of block in different layers.
in_channels (list): Input channel in each layer.
out_channels (list): Output channel in each layer.
strides (list): Stride size in each layer.
num_classes (int): The number of classes that the training images are belonging to.
Returns:
Tensor, output tensor.
Examples:
>>> ResNet(ResidualBlock,
>>> [3, 4, 6, 3],
>>> [64, 256, 512, 1024],
>>> [256, 512, 1024, 2048],
>>> [1, 2, 2, 2],
>>> 10)
"""
def
__init__
(
self
,
block
,
layer_nums
,
in_channels
,
out_channels
,
strides
,
num_classes
):
super
(
ResNet
,
self
).
__init__
()
if
not
len
(
layer_nums
)
==
len
(
in_channels
)
==
len
(
out_channels
)
==
4
:
raise
ValueError
(
"the length of layer_num, in_channels, out_channels list must be 4!"
)
self
.
conv1
=
_conv7x7
(
3
,
64
,
stride
=
2
)
self
.
bn1
=
_bn
(
64
)
self
.
relu
=
P
.
ReLU
()
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"same"
)
self
.
layer1
=
self
.
_make_layer
(
block
,
layer_nums
[
0
],
in_channel
=
in_channels
[
0
],
out_channel
=
out_channels
[
0
],
stride
=
strides
[
0
])
self
.
layer2
=
self
.
_make_layer
(
block
,
layer_nums
[
1
],
in_channel
=
in_channels
[
1
],
out_channel
=
out_channels
[
1
],
stride
=
strides
[
1
])
self
.
layer3
=
self
.
_make_layer
(
block
,
layer_nums
[
2
],
in_channel
=
in_channels
[
2
],
out_channel
=
out_channels
[
2
],
stride
=
strides
[
2
])
self
.
layer4
=
self
.
_make_layer
(
block
,
layer_nums
[
3
],
in_channel
=
in_channels
[
3
],
out_channel
=
out_channels
[
3
],
stride
=
strides
[
3
])
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
flatten
=
nn
.
Flatten
()
self
.
end_point
=
_fc
(
out_channels
[
3
],
num_classes
)
def
_make_layer
(
self
,
block
,
layer_num
,
in_channel
,
out_channel
,
stride
):
"""
Make stage network of ResNet.
Args:
block (Cell): Resnet block.
layer_num (int): Layer number.
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer.
Returns:
SequentialCell, the output layer.
Examples:
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
"""
layers
=
[]
resnet_block
=
block
(
in_channel
,
out_channel
,
stride
=
stride
)
layers
.
append
(
resnet_block
)
for
_
in
range
(
1
,
layer_num
):
resnet_block
=
block
(
out_channel
,
out_channel
,
stride
=
1
)
layers
.
append
(
resnet_block
)
return
nn
.
SequentialCell
(
layers
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
relu
(
x
)
c1
=
self
.
maxpool
(
x
)
c2
=
self
.
layer1
(
c1
)
c3
=
self
.
layer2
(
c2
)
c4
=
self
.
layer3
(
c3
)
c5
=
self
.
layer4
(
c4
)
out
=
self
.
mean
(
c5
,
(
2
,
3
))
out
=
self
.
flatten
(
out
)
out
=
self
.
end_point
(
out
)
return
out
def
resnet50
(
class_num
=
10
):
"""
Get ResNet50 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet50 neural network.
Examples:
>>> net = resnet50(10)
"""
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
6
,
3
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
class_num
)
def
resnet101
(
class_num
=
1001
):
"""
Get ResNet101 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet101 neural network.
Examples:
>>> net = resnet101(1001)
"""
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
23
,
3
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
class_num
)
tests/ut/python/train/test_amp.py
浏览文件 @
45dbc8bf
...
...
@@ -22,10 +22,10 @@ from mindspore import amp
from
mindspore
import
nn
from
mindspore.train
import
Model
,
ParallelMode
from
mindspore.common
import
dtype
as
mstype
from
mindspore.model_zoo.resnet
import
resnet50
from
....dataset_mock
import
MindData
from
mindspore.parallel._auto_parallel_context
import
auto_parallel_context
from
mindspore.communication.management
import
init
from
tests.ut.python.model.resnet
import
resnet50
def
setup_module
(
module
):
_
=
module
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录