提交 44efabe2 编写于 作者: S shenwei

fix api document

上级 f1a9a7ce
......@@ -4421,23 +4421,7 @@ class CelebADataset(MappableDataset):
The generated dataset has two columns ['image', 'attr'].
The type of the image tensor is uint8. The attr tensor is uint32 and one hot type.
Args:
dataset_dir (str): Path to the root directory that contains the dataset.
num_parallel_workers (int, optional): Number of workers to read the data (default=value set in the config).
shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None).
dataset_type (str): one of 'all', 'train', 'valid' or 'test'.
sampler (Sampler, optional): Object used to choose samples from the dataset (default=None).
decode (bool, optional): decode the images after reading (default=False).
extensions (list[str], optional): List of file extensions to be
included in the dataset (default=None).
num_samples (int, optional): The number of images to be included in the dataset.
(default=None, all images).
num_shards (int, optional): Number of shards that the dataset should be divided
into (default=None).
shard_id (int, optional): The shard ID within num_shards (default=None). This
argument should be specified only when num_shards is also specified.
Citation of CelebA dataset.
Citation of CelebA dataset.
.. code-block::
......@@ -4455,9 +4439,9 @@ class CelebADataset(MappableDataset):
bibsource = {dblp computer science bibliography, https://dblp.org},
howpublished = {http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html},
description = {CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset
with more than 200K celebrity images, each with 40 attribute annotations. The
images in this dataset cover large pose variations and background clutter. CelebA
has large diversities, large quantities, and rich annotations, including
with more than 200K celebrity images, each with 40 attribute annotations.
The images in this dataset cover large pose variations and background clutter.
CelebA has large diversities, large quantities, and rich annotations, including
* 10,177 number of identities,
* 202,599 number of face images, and
* 5 landmark locations, 40 binary attributes annotations per image.
......@@ -4465,6 +4449,22 @@ class CelebADataset(MappableDataset):
vision tasks: face attribute recognition, face detection, landmark (or facial part)
localization, and face editing & synthesis.}
}
Args:
dataset_dir (str): Path to the root directory that contains the dataset.
num_parallel_workers (int, optional): Number of workers to read the data (default=value set in the config).
shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None).
dataset_type (str): one of 'all', 'train', 'valid' or 'test'.
sampler (Sampler, optional): Object used to choose samples from the dataset (default=None).
decode (bool, optional): decode the images after reading (default=False).
extensions (list[str], optional): List of file extensions to be
included in the dataset (default=None).
num_samples (int, optional): The number of images to be included in the dataset.
(default=None, all images).
num_shards (int, optional): Number of shards that the dataset should be divided
into (default=None).
shard_id (int, optional): The shard ID within num_shards (default=None). This
argument should be specified only when num_shards is also specified.
"""
@check_celebadataset
......@@ -4542,6 +4542,24 @@ class CLUEDataset(SourceDataset):
models, corpus and leaderboard. Here we bring in classification task of CLUE, which are AFQMC, TNEWS, IFLYTEK,
CMNLI, WSC and CSL.
Citation of CLUE dataset.
.. code-block::
@article{CLUEbenchmark,
title = {CLUE: A Chinese Language Understanding Evaluation Benchmark},
author = {Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Weitang Liu, Junyi Li, Yudong Li,
Kai Sun, Yechen Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian, Dian Yu, Bo Shi, Jun Zeng,
Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou,
Shaoweihua Liu, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Zhenzhong Lan},
journal = {arXiv preprint arXiv:2004.05986},
year = {2020},
howpublished = {https://github.com/CLUEbenchmark/CLUE},
description = {CLUE, a Chinese Language Understanding Evaluation benchmark. It contains eight different
tasks, including single-sentence classification, sentence pair classification, and machine
reading comprehension.}
}
Args:
dataset_files (str or list[str]): String or list of files to be read or glob strings to search for a pattern of
files. The list will be sorted in a lexicographical order.
......@@ -4564,24 +4582,6 @@ class CLUEDataset(SourceDataset):
shard_id (int, optional): The shard ID within num_shards (default=None). This
argument should be specified only when num_shards is also specified.
Citation of CLUE dataset.
.. code-block::
@article{CLUEbenchmark,
title = {CLUE: A Chinese Language Understanding Evaluation Benchmark},
author = {Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Weitang Liu, Junyi Li, Yudong Li,
Kai Sun, Yechen Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian, Dian Yu, Bo Shi, Jun Zeng,
Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou,
Shaoweihua Liu, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Zhenzhong Lan},
journal = {arXiv preprint arXiv:2004.05986},
year = {2020},
howpublished = {https://github.com/CLUEbenchmark/CLUE},
description = {CLUE, a Chinese Language Understanding Evaluation benchmark. It contains eight different
tasks, including single-sentence classification, sentence pair classification, and machine
reading comprehension.}
}
Examples:
>>> import mindspore.dataset as ds
>>> dataset_files = ["/path/to/1", "/path/to/2"] # contains 1 or multiple text files
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册