Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
3db8cfa5
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3db8cfa5
编写于
4月 12, 2020
作者:
W
Wei Luning
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pattern AdjustAllReduceMulAdduse the old opadd test case for bugtemp fix try
上级
2a1aad0f
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
209 addition
and
8 deletion
+209
-8
mindspore/ccsrc/operator/ops.cc
mindspore/ccsrc/operator/ops.cc
+1
-0
mindspore/ccsrc/operator/ops.h
mindspore/ccsrc/operator/ops.h
+1
-0
mindspore/ccsrc/optimizer/irpass.cc
mindspore/ccsrc/optimizer/irpass.cc
+1
-0
mindspore/ccsrc/optimizer/irpass.h
mindspore/ccsrc/optimizer/irpass.h
+1
-0
mindspore/ccsrc/optimizer/irpass/arithmetic_simplify.h
mindspore/ccsrc/optimizer/irpass/arithmetic_simplify.h
+110
-0
mindspore/ccsrc/pipeline/parse/function_block.h
mindspore/ccsrc/pipeline/parse/function_block.h
+2
-1
mindspore/ccsrc/pipeline/pass.cc
mindspore/ccsrc/pipeline/pass.cc
+1
-0
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+1
-1
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+1
-1
mindspore/ops/primitive.py
mindspore/ops/primitive.py
+2
-1
tests/ut/cpp/optimizer/lib_test.cc
tests/ut/cpp/optimizer/lib_test.cc
+19
-0
tests/ut/cpp/python_input/gtest_input/optimizer/opt_test.py
tests/ut/cpp/python_input/gtest_input/optimizer/opt_test.py
+43
-2
tests/ut/python/train/test_amp.py
tests/ut/python/train/test_amp.py
+26
-2
未找到文件。
mindspore/ccsrc/operator/ops.cc
浏览文件 @
3db8cfa5
...
...
@@ -241,6 +241,7 @@ const PrimitivePtr kPrimNotInDict = std::make_shared<Primitive>("not_in_dict");
const
PrimitivePtr
kPrimMirror
=
std
::
make_shared
<
Primitive
>
(
"_MirrorOperator"
);
const
PrimitivePtr
kPrimVirtualDiv
=
std
::
make_shared
<
Primitive
>
(
"_VirtualDiv"
);
const
PrimitivePtr
kPrimVirtualDataset
=
std
::
make_shared
<
Primitive
>
(
"_VirtualDataset"
);
const
PrimitivePtr
kPrimAllReduce
=
std
::
make_shared
<
Primitive
>
(
"AllReduce"
);
// Debug ops
const
PrimitivePtr
kPrimScalarSummary
=
std
::
make_shared
<
Primitive
>
(
"ScalarSummary"
);
...
...
mindspore/ccsrc/operator/ops.h
浏览文件 @
3db8cfa5
...
...
@@ -245,6 +245,7 @@ extern const PrimitivePtr kPrimInDict;
extern
const
PrimitivePtr
kPrimNotInDict
;
// Comm ops
extern
const
PrimitivePtr
kPrimAllReduce
;
extern
const
PrimitivePtr
kPrimMirror
;
extern
const
PrimitivePtr
kPrimVirtualDiv
;
extern
const
PrimitivePtr
kPrimVirtualDataset
;
...
...
mindspore/ccsrc/optimizer/irpass.cc
浏览文件 @
3db8cfa5
...
...
@@ -53,6 +53,7 @@ OptimizeIRPassLib::OptimizeIRPassLib() {
{
prim
::
kPrimInsertGradientOf
,
prim
::
kPrimPrintShapeType
,
prim
::
kPrimGetRefKey
,
prim
::
kPrimMirror
,
prim
::
kPrimVirtualDiv
});
zero_like_fill_zero_
=
MakeSubstitution
(
ZeroLikeFillZero
(),
"zero_like_fill_zero"
,
prim
::
kPrimZerosLikeTensor
);
adjust_all_reduce_mul_add_
=
MakeSubstitution
(
AdjustAllReduceMulAdd
(),
"adjust_all_reduce_mul_add"
,
prim
::
kPrimAddN
);
// ops eliminate
item_tuple_eliminate_
=
...
...
mindspore/ccsrc/optimizer/irpass.h
浏览文件 @
3db8cfa5
...
...
@@ -35,6 +35,7 @@ class OptimizeIRPassLib {
SubstitutionPtr
arithmetic_simplify_
;
SubstitutionPtr
special_op_eliminate_
;
SubstitutionPtr
zero_like_fill_zero_
;
SubstitutionPtr
adjust_all_reduce_mul_add_
;
// ops eliminate
SubstitutionPtr
item_tuple_eliminate_
;
...
...
mindspore/ccsrc/optimizer/irpass/arithmetic_simplify.h
浏览文件 @
3db8cfa5
...
...
@@ -228,6 +228,116 @@ class ConstantDuplicateMul : public AnfVisitor {
CNodePtr
cnode_
;
};
// grad = AllReduce(grad) / worker_number
// grad = grad + weight * decy
// ->
// grad = grad + weight * decy
// grad = AllReduce(grad) / worker_number
// {prim::kPrimAddN, {prim::kPrimMakeTuple, {prim::kPrimMul, {prim::kPrimAllReduce, X}, Y}, Z}} ->
// {prim::kPrimMul, {prim::kPrimAllReduce, {prim::kPrimAddN,{prim::kPrimMakeTuple, Z, X}}}, Y}
class
AdjustAllReduceMulAdd
:
public
AnfVisitor
{
public:
AnfNodePtr
operator
()(
const
OptimizerPtr
&
,
const
AnfNodePtr
&
node
)
override
{
Reset
();
// {prim::kPrimAddN, Zs}
if
(
!
IsPrimitiveCNode
(
node
,
prim
::
kPrimAddN
))
{
return
nullptr
;
}
auto
addn
=
node
->
cast
<
CNodePtr
>
();
if
(
addn
->
size
()
!=
2
)
{
return
nullptr
;
}
AnfVisitor
::
Match
(
prim
::
kPrimMakeTuple
,
{
IsNode
,
IsNode
})(
addn
->
input
(
1
));
if
(
x_
==
nullptr
||
y_
==
nullptr
||
z_
==
nullptr
||
all_reduce_fg_
==
nullptr
)
{
return
nullptr
;
}
auto
addn_maketuple
=
addn
->
input
(
1
);
auto
fg
=
all_reduce_fg_
;
// addn inputs cross the graph, make the inputs same as allreduce node.
if
(
z_
->
isa
<
CNode
>
()
&&
fg
!=
z_
->
func_graph
())
{
auto
cnode_z
=
z_
->
cast
<
CNodePtr
>
();
z_
=
NewCNode
(
cnode_z
->
inputs
(),
fg
);
}
auto
addn_op_node
=
addn
->
input
(
0
);
auto
make_tuple_op_node
=
addn
->
input
(
1
)
->
cast
<
CNodePtr
>
()
->
input
(
0
);
AnfNodePtr
tuple
=
NewCNode
({
make_tuple_op_node
,
z_
,
x_
},
fg
);
AnfNodePtr
add
=
NewCNode
({
addn_op_node
,
tuple
},
fg
);
AnfNodePtr
all_reduce
=
NewCNode
({
all_reduce_
,
add
},
fg
);
AnfNodePtr
mul
=
NewCNode
({
mul_
,
all_reduce
,
y_
},
fg
);
ProcessDependEdge
(
fg
,
addn_maketuple
,
all_reduce
);
return
mul
;
}
void
ProcessDependEdge
(
const
FuncGraphPtr
&
fg
,
const
AnfNodePtr
&
addn_maketuple
,
const
AnfNodePtr
&
new_node
)
{
// If has dynamic loss scale.
auto
&
users_map
=
fg
->
manager
()
->
node_users
();
auto
it
=
users_map
.
find
(
mul_cnode_
);
if
(
it
!=
users_map
.
end
())
{
auto
users
=
it
->
second
;
for
(
auto
&
user_pair
:
users
)
{
auto
node
=
user_pair
.
first
;
if
(
node
!=
addn_maketuple
)
{
if
(
IsPrimitiveCNode
(
node
,
prim
::
kPrimMakeTuple
))
{
fg
->
manager
()
->
SetEdge
(
node
,
user_pair
.
second
,
new_node
);
}
}
}
}
}
void
Visit
(
const
AnfNodePtr
&
node
)
override
{
if
(
level_
==
0
)
{
level_
=
1
;
is_reduce_match_
=
false
;
// {prim::kPrimMul, {prim::kPrimAllReduce, X}, Y}
AnfVisitor
::
Match
(
prim
::
kPrimMul
)(
node
);
level_
=
0
;
if
(
is_reduce_match_
)
{
mul_
=
node
->
cast
<
CNodePtr
>
()
->
input
(
0
);
mul_cnode_
=
node
->
cast
<
CNodePtr
>
();
y_
=
tmp_
;
}
else
{
z_
=
node
;
}
}
if
(
level_
==
1
)
{
// {prim::kPrimAllReduce, X}
if
(
IsPrimitiveCNode
(
node
,
prim
::
kPrimAllReduce
))
{
auto
cnode
=
node
->
cast
<
CNodePtr
>
();
if
(
cnode
->
size
()
>
1
)
{
all_reduce_
=
cnode
->
input
(
0
);
x_
=
cnode
->
input
(
1
);
is_reduce_match_
=
true
;
all_reduce_fg_
=
cnode
->
func_graph
();
}
}
else
{
tmp_
=
node
;
}
}
}
void
Reset
()
{
level_
=
0
;
is_reduce_match_
=
false
;
x_
=
nullptr
;
y_
=
nullptr
;
z_
=
nullptr
;
tmp_
=
nullptr
;
all_reduce_fg_
=
nullptr
;
}
private:
int
level_
{
0
};
bool
is_reduce_match_
{
false
};
AnfNodePtr
x_
{
nullptr
},
y_
{
nullptr
},
z_
{
nullptr
},
tmp_
{
nullptr
};
AnfNodePtr
all_reduce_
{
nullptr
},
mul_
{
nullptr
},
mul_cnode_
{
nullptr
};
FuncGraphPtr
all_reduce_fg_
{
nullptr
};
};
class
ArithmeticSimplify
{
public:
ArithmeticSimplify
()
...
...
mindspore/ccsrc/pipeline/parse/function_block.h
浏览文件 @
3db8cfa5
...
...
@@ -28,6 +28,7 @@
#include <utility>
#include "pipeline/parse/parse_base.h"
#include "utils/log_adapter.h"
#include "utils/ordered_map.h"
namespace
mindspore
{
namespace
parse
{
...
...
@@ -99,7 +100,7 @@ class FunctionBlock : public std::enable_shared_from_this<FunctionBlock> {
std
::
unordered_map
<
ParameterPtr
,
AnfNodePtr
>
removable_phis_
;
// set state nodes need to insert before function return nodes.
std
::
unordered_m
ap
<
AnfNodePtr
,
std
::
string
>
state_assign_
;
OrderedM
ap
<
AnfNodePtr
,
std
::
string
>
state_assign_
;
// hold declared global variables in function
std
::
set
<
std
::
string
>
global_vars_
;
...
...
mindspore/ccsrc/pipeline/pass.cc
浏览文件 @
3db8cfa5
...
...
@@ -82,6 +82,7 @@ OptPassGroupMap GetOptPassesA(const opt::irpass::OptimizeIRPassLib &irpass) {
// Arithmetic simplifications
irpass
.
arithmetic_simplify_
,
irpass
.
addn_zero_filter_
,
irpass
.
adjust_all_reduce_mul_add_
,
// Miscellaneous
irpass
.
item_tuple_eliminate_
,
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
3db8cfa5
...
...
@@ -1213,7 +1213,7 @@ class UnsortedSegmentSum(PrimitiveWithInfer):
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
Examples:
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float)
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float
32
)
>>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32)
>>> num_segments = 4
>>> P.UnsortedSegmentSum()(input_x, segment_ids, num_segments)
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
3db8cfa5
...
...
@@ -1765,7 +1765,7 @@ class LayerNorm(Primitive):
`Layer Normalization <https://arxiv.org/abs/1607.06450>`_.
.. math::
y = \frac{x - mean
]
}{\sqrt{variance + \epsilon}} * \gamma + \beta
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
...
...
mindspore/ops/primitive.py
浏览文件 @
3db8cfa5
...
...
@@ -284,7 +284,8 @@ def prim_attr_register(fn):
def
constexpr
(
fn
=
None
,
get_instance
=
True
,
name
=
None
):
"""
Makes a PrimitiveWithInfer operator, which infer the value while compiling.
Makes a PrimitiveWithInfer operator, which infer the value while compiling. We can define a function
to compute between constant variable and used in constructß.
Args:
fn (function): A `fn` use as the infer_value of the output operator.
...
...
tests/ut/cpp/optimizer/lib_test.cc
浏览文件 @
3db8cfa5
...
...
@@ -556,5 +556,24 @@ TEST_F(TestOptLib, test_constant_duplicate_mul) {
ASSERT_TRUE
(
CheckOpt
(
beforerl
,
after
,
patterns
));
ASSERT_TRUE
(
CheckOpt
(
beforerr
,
after
,
patterns
));
}
TEST_F
(
TestOptLib
,
test_adjust_allreduce_mul_add
)
{
FuncGraphPtr
beforell
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"beforell"
);
FuncGraphPtr
beforelr
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"beforelr"
);
FuncGraphPtr
beforerl
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"beforerl"
);
FuncGraphPtr
beforerr
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"beforerr"
);
FuncGraphPtr
after1
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"after1"
);
FuncGraphPtr
before2r
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"before2r"
);
FuncGraphPtr
before2l
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"before2l"
);
FuncGraphPtr
after2
=
getPyFun
.
CallAndParseRet
(
"test_adjust_allreduce_mul_add"
,
"after2"
);
auto
patterns
=
std
::
vector
<
SubstitutionPtr
>
({
irpass
.
adjust_all_reduce_mul_add_
});
ASSERT_TRUE
(
CheckOpt
(
beforell
,
after1
,
patterns
));
ASSERT_TRUE
(
CheckOpt
(
beforelr
,
after1
,
patterns
));
ASSERT_TRUE
(
CheckOpt
(
beforerl
,
after1
,
patterns
));
ASSERT_TRUE
(
CheckOpt
(
beforerr
,
after1
,
patterns
));
ASSERT_TRUE
(
CheckOpt
(
before2l
,
after2
,
patterns
));
ASSERT_TRUE
(
CheckOpt
(
before2r
,
after2
,
patterns
));
}
}
// namespace opt
}
// namespace mindspore
tests/ut/cpp/python_input/gtest_input/optimizer/opt_test.py
浏览文件 @
3db8cfa5
...
...
@@ -1045,8 +1045,8 @@ def test_print_tuple_wrapper(tag):
def
test_constant_duplicate_mul
(
tag
):
fns
=
FnDict
()
Mul
=
Primitive
(
'Mul'
)
;
Sqrt
=
Primitive
(
'Sqrt'
)
;
Mul
=
Primitive
(
'Mul'
)
Sqrt
=
Primitive
(
'Sqrt'
)
x
=
Tensor
(
np
.
array
([[
2
,
2
],
[
2
,
3
]]).
astype
(
'float32'
))
tensor1
=
Tensor
(
np
.
array
([[
1.2
,
2.1
],
[
2.2
,
3.2
]]).
astype
(
'float32'
))
...
...
@@ -1073,3 +1073,44 @@ def test_constant_duplicate_mul(tag):
return
Mul
(
Sqrt
(
x
),
Mul
(
tensor1
,
tensor2
))
return
fns
[
tag
]
def
test_adjust_allreduce_mul_add
(
tag
):
fns
=
FnDict
()
Mul
=
Primitive
(
'Mul'
)
AddN
=
Primitive
(
'AddN'
)
AllReduce
=
Primitive
(
'AllReduce'
)
@
fns
def
beforell
(
x
,
y
,
z
):
return
AddN
((
z
,
Mul
(
y
,
AllReduce
(
x
))))
@
fns
def
beforelr
(
x
,
y
,
z
):
return
AddN
((
z
,
Mul
(
AllReduce
(
x
),
y
)))
@
fns
def
beforerl
(
x
,
y
,
z
):
return
AddN
((
Mul
(
y
,
AllReduce
(
x
)),
z
))
@
fns
def
beforerr
(
x
,
y
,
z
):
return
AddN
((
Mul
(
AllReduce
(
x
),
y
),
z
))
@
fns
def
after1
(
x
,
y
,
z
):
return
Mul
(
AllReduce
(
AddN
((
z
,
x
))),
y
)
@
fns
def
before2r
(
x
,
y
,
z
):
return
AddN
((
Mul
(
AllReduce
(
x
),
y
),
Mul
(
z
,
z
)))
@
fns
def
before2l
(
x
,
y
,
z
):
return
AddN
((
Mul
(
z
,
z
),
Mul
(
AllReduce
(
x
),
y
)))
@
fns
def
after2
(
x
,
y
,
z
):
return
Mul
(
AllReduce
(
AddN
((
Mul
(
z
,
z
),
x
))),
y
)
return
fns
[
tag
]
tests/ut/python/train/test_amp.py
浏览文件 @
3db8cfa5
...
...
@@ -20,9 +20,14 @@ import mindspore.context as context
from
mindspore
import
Tensor
from
mindspore
import
amp
from
mindspore
import
nn
from
mindspore.train
import
Model
from
mindspore.train
import
Model
,
ParallelMode
from
mindspore
import
Tensor
from
mindspore.common
import
dtype
as
mstype
import
mindspore.context
as
context
from
mindspore.model_zoo.resnet
import
resnet50
from
....dataset_mock
import
MindData
from
mindspore.parallel._auto_parallel_context
import
auto_parallel_context
from
mindspore.communication.management
import
init
def
setup_module
(
module
):
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
...
...
@@ -138,3 +143,22 @@ def test_compile_model_train_O2():
with
pytest
.
raises
(
ValueError
):
# not actual run, the metrics step will fail, check if compile ok.
model
.
eval
(
dataset
)
def
test_compile_model_train_O2_parallel
():
dataset_types
=
(
np
.
float32
,
np
.
float32
)
dataset_shapes
=
((
16
,
16
),
(
16
,
16
))
dataset
=
MindDataSet
(
dataset_types
,
dataset_shapes
)
net
=
NetNoLoss
(
16
,
16
)
loss
=
nn
.
MSELoss
()
optimizer
=
nn
.
Momentum
(
net
.
trainable_params
(),
0.1
,
0.9
,
0.00004
,
1024.0
)
context
.
set_auto_parallel_context
(
global_rank
=
0
,
device_num
=
8
,
mirror_mean
=
True
,
parameter_broadcast
=
True
,
parallel_mode
=
ParallelMode
.
DATA_PARALLEL
)
init
()
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
optimizer
,
metrics
=
{
"acc"
},
amp_level
=
"O2"
)
model
.
train
(
2
,
dataset
,
dataset_sink_mode
=
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录