提交 3d7732a7 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!3726 add lite op PriorBox

Merge pull request !3726 from zhaozhenlong/lite/op/prior_box
...@@ -173,7 +173,8 @@ union PrimitiveType { ...@@ -173,7 +173,8 @@ union PrimitiveType {
Div, Div,
Where, Where,
OneHot, OneHot,
Lstm Lstm,
PriorBox
} }
enum QuantType: int { enum QuantType: int {
......
...@@ -722,3 +722,17 @@ table OneHot { ...@@ -722,3 +722,17 @@ table OneHot {
table Lstm{ table Lstm{
bidirection: bool = false; bidirection: bool = false;
} }
table PriorBox {
min_sizes: [int];
max_sizes: [int];
aspect_ratios: [float];
variances: [float];
image_size_w: int;
image_size_h: int;
step_w: float;
step_h: float;
clip: bool = true;
flip: bool = true;
offset: float;
}
...@@ -131,6 +131,8 @@ Primitive *Primitive::CreatePrimitive(schema::Primitive *primitive) { ...@@ -131,6 +131,8 @@ Primitive *Primitive::CreatePrimitive(schema::Primitive *primitive) {
return new lite::Resize(const_cast<schema::Primitive *>(primitive)); return new lite::Resize(const_cast<schema::Primitive *>(primitive));
case schema::PrimitiveType_OneHot: case schema::PrimitiveType_OneHot:
return new lite::OneHot(const_cast<schema::Primitive *>(primitive)); return new lite::OneHot(const_cast<schema::Primitive *>(primitive));
case schema::PrimitiveType_PriorBox:
return new lite::PriorBox(const_cast<schema::Primitive *>(primitive));
default: default:
break; break;
} }
......
...@@ -660,7 +660,14 @@ class StridedSlice : public Primitive { ...@@ -660,7 +660,14 @@ class StridedSlice : public Primitive {
std::vector<int> new_axis_mask_; std::vector<int> new_axis_mask_;
std::vector<int> shrink_axis_mask_; std::vector<int> shrink_axis_mask_;
}; };
class PriorBox : public Primitive {
public:
explicit PriorBox(schema::Primitive *primitive) : Primitive(primitive) {}
const schema::PriorBox *GetAttrbute() const { return this->primitive->value_as_PriorBox(); }
int InferShape(std::vector<tensor::Tensor *> inputs, std::vector<tensor::Tensor *> outputs) override;
};
} // namespace lite } // namespace lite
} // namespace mindspore } // namespace mindspore
#endif // MINDSPORE_LITE_SRC_OPS_OPS_H_ #endif // MINDSPORE_LITE_SRC_OPS_OPS_H_
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/ops.h"
#include "include/errorcode.h"
#include "utils/log_adapter.h"
#include "src/ir/tensor.h"
namespace mindspore::lite {
namespace {
constexpr int kPriorBoxPoints = 4;
constexpr int kPriorBoxN = 1;
constexpr int kPriorBoxW = 1;
constexpr int kPriorBoxC = 2;
} // namespace
int PriorBox::InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor::Tensor *> outputs_) {
auto param = GetAttrbute();
MS_ASSERT(param != nullptr);
std::vector<float> different_aspect_ratios{1.0f};
auto aspect_ratios = param->aspect_ratios();
MS_ASSERT(aspect_ratios != nullptr);
for (auto i = 0; i < aspect_ratios->size(); i++) {
float ratio = (*aspect_ratios)[i];
bool exist = std::any_of(different_aspect_ratios.begin(), different_aspect_ratios.end(), [&](float v) {
return abs(ratio - v) < 1e-6;
});
if (!exist) {
different_aspect_ratios.emplace_back(ratio);
if (param->flip()) {
different_aspect_ratios.emplace_back(1.0f / ratio);
}
}
}
int32_t num_priors_box = param->min_sizes()->size() * different_aspect_ratios.size() + param->max_sizes()->size();
auto input = inputs_.at(0);
MS_ASSERT(input != nullptr);
int32_t h = input->Height() * input->Width() * num_priors_box * kPriorBoxPoints;
std::vector<int> output_shape{kPriorBoxN, h, kPriorBoxW, kPriorBoxC};
auto output = outputs_.at(0);
MS_ASSERT(output != nullptr);
output->set_shape(output_shape);
output->set_data_type(kNumberTypeFloat32);
output->SetFormat(input->GetFormat());
return RET_OK;
}
} // namespace mindspore::lite
...@@ -62,6 +62,7 @@ ...@@ -62,6 +62,7 @@
#include "src/runtime/kernel/arm/opclib/fp32/unsqueeze.h" #include "src/runtime/kernel/arm/opclib/fp32/unsqueeze.h"
#include "src/runtime/kernel/arm/opclib/fp32/one_hot.h" #include "src/runtime/kernel/arm/opclib/fp32/one_hot.h"
#include "src/runtime/kernel/arm/opclib/fp32/strided_slice.h" #include "src/runtime/kernel/arm/opclib/fp32/strided_slice.h"
#include "src/runtime/kernel/arm/base/prior_box.h"
namespace mindspore::kernel { namespace mindspore::kernel {
FillParameter *PopulateFillParam(const lite::Primitive *primitive) { FillParameter *PopulateFillParam(const lite::Primitive *primitive) {
...@@ -990,6 +991,60 @@ OpParameter *PopulateAddNParam(const lite::Primitive *primitive) { ...@@ -990,6 +991,60 @@ OpParameter *PopulateAddNParam(const lite::Primitive *primitive) {
return parameter; return parameter;
} }
PriorBoxParameter *PopulatePriorBoxParameter(const lite::Primitive *primitive) {
PriorBoxParameter *param = new (std::nothrow) PriorBoxParameter();
if (param == nullptr) {
MS_LOG(ERROR) << "new PriorBoxParameter failed.";
return nullptr;
}
param->op_parameter_.type_ = primitive->Type();
auto prior_box_param = primitive->Value()->value_as_PriorBox();
if (prior_box_param->min_sizes()->size() > PRIOR_BOX_MAX_NUM) {
MS_LOG(ERROR) << "PriorBox min_sizes size exceeds max num " << PRIOR_BOX_MAX_NUM << ", got "
<< prior_box_param->min_sizes();
delete (param);
return nullptr;
}
param->min_sizes_size = prior_box_param->min_sizes()->size();
if (prior_box_param->max_sizes()->size() > PRIOR_BOX_MAX_NUM) {
MS_LOG(ERROR) << "PriorBox max_sizes size exceeds max num " << PRIOR_BOX_MAX_NUM << ", got "
<< prior_box_param->max_sizes();
delete (param);
return nullptr;
}
param->max_sizes_size = prior_box_param->max_sizes()->size();
(void)memcpy(param->max_sizes, prior_box_param->max_sizes()->data(),
prior_box_param->max_sizes()->size() * sizeof(int32_t));
(void)memcpy(param->min_sizes, prior_box_param->min_sizes()->data(),
prior_box_param->min_sizes()->size() * sizeof(int32_t));
if (prior_box_param->aspect_ratios()->size() > PRIOR_BOX_MAX_NUM) {
MS_LOG(ERROR) << "PriorBox aspect_ratios size exceeds max num " << PRIOR_BOX_MAX_NUM << ", got "
<< prior_box_param->aspect_ratios();
delete (param);
return nullptr;
}
param->aspect_ratios_size = prior_box_param->aspect_ratios()->size();
(void)memcpy(param->aspect_ratios, prior_box_param->aspect_ratios()->data(),
prior_box_param->aspect_ratios()->size() * sizeof(float));
if (prior_box_param->variances()->size() != PRIOR_BOX_VAR_NUM) {
MS_LOG(ERROR) << "PriorBox variances size should be " << PRIOR_BOX_VAR_NUM << ", got "
<< prior_box_param->variances()->size();
delete (param);
return nullptr;
}
(void)memcpy(param->variances, prior_box_param->variances()->data(), PRIOR_BOX_VAR_NUM * sizeof(float));
param->flip = prior_box_param->flip();
param->clip = prior_box_param->clip();
param->offset = prior_box_param->offset();
param->image_size_h = prior_box_param->image_size_h();
param->image_size_w = prior_box_param->image_size_w();
param->step_h = prior_box_param->step_h();
param->step_w = prior_box_param->step_w();
return param;
}
OpParameter *PopulateParameter(const lite::Primitive *primitive) { OpParameter *PopulateParameter(const lite::Primitive *primitive) {
MS_EXCEPTION_IF_NULL(primitive); MS_EXCEPTION_IF_NULL(primitive);
auto op_type = primitive->Type(); auto op_type = primitive->Type();
...@@ -1109,6 +1164,8 @@ OpParameter *PopulateParameter(const lite::Primitive *primitive) { ...@@ -1109,6 +1164,8 @@ OpParameter *PopulateParameter(const lite::Primitive *primitive) {
return reinterpret_cast<OpParameter *>(PopulateOneHotParameter(primitive)); return reinterpret_cast<OpParameter *>(PopulateOneHotParameter(primitive));
case schema::PrimitiveType_AddN: case schema::PrimitiveType_AddN:
return reinterpret_cast<OpParameter *>(PopulateAddNParam(primitive)); return reinterpret_cast<OpParameter *>(PopulateAddNParam(primitive));
case schema::PrimitiveType_PriorBox:
return reinterpret_cast<OpParameter *>(PopulatePriorBoxParameter(primitive));
default: default:
break; break;
} }
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <cmath>
#include "src/runtime/kernel/arm/base/prior_box.h"
#include "schema/model_generated.h"
#include "src/kernel_factory.h"
#include "include/errorcode.h"
#include "include/context.h"
#include "src/runtime/runtime_api.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_NULL_PTR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_PriorBox;
namespace mindspore::kernel {
namespace {
constexpr int kInputNum = 2;
constexpr int kOutputNum = 1;
} // namespace
int PriorBoxCPUKernel::Init() {
if (prior_box_param_ == nullptr) {
MS_LOG(ERROR) << "PriorBoxParameter nullptr";
return RET_NULL_PTR;
}
MS_ASSERT(inputs_.size() == kInputNum);
MS_ASSERT(outputs_.size() == kOutputNum);
auto ret = GeneratePriorBox();
return ret;
}
int PriorBoxCPUKernel::GeneratePriorBox() {
const int fmap_w = inputs_[0]->Width();
const int fmap_h = inputs_[0]->Height();
const int image_w = prior_box_param_->image_size_w > 0 ? prior_box_param_->image_size_w : inputs_[1]->Width();
const int image_h = prior_box_param_->image_size_h > 0 ? prior_box_param_->image_size_h : inputs_[1]->Height();
const float step_w =
prior_box_param_->step_w > 0.0f ? prior_box_param_->step_w : static_cast<float>(image_w) / fmap_w;
const float step_h =
prior_box_param_->step_h > 0.0f ? prior_box_param_->step_h : static_cast<float>(image_h) / fmap_h;
std::vector<float> different_aspect_ratios{1.0f};
auto aspect_ratios = prior_box_param_->aspect_ratios;
MS_ASSERT(aspect_ratios != nullptr);
for (auto i = 0; i < prior_box_param_->aspect_ratios_size; i++) {
float ratio = aspect_ratios[i];
bool exist = std::any_of(different_aspect_ratios.begin(), different_aspect_ratios.end(),
[&](float v) { return abs(ratio - v) < 1e-6; });
if (!exist) {
different_aspect_ratios.emplace_back(ratio);
if (prior_box_param_->flip) {
different_aspect_ratios.emplace_back(1.0f / ratio);
}
}
}
for (int i = 0; i < fmap_h; i++) {
float cy = i + prior_box_param_->offset;
for (int j = 0; j < fmap_w; j++) {
float cx = j + prior_box_param_->offset;
for (auto k = 0; k < prior_box_param_->min_sizes_size; k++) {
float min_size = prior_box_param_->min_sizes[k];
output_.emplace_back((cx - min_size / step_w * 0.5f) / fmap_w);
output_.emplace_back((cy - min_size / step_h * 0.5f) / fmap_h);
output_.emplace_back((cx + min_size / step_w * 0.5f) / fmap_w);
output_.emplace_back((cy + min_size / step_h * 0.5f) / fmap_h);
if (prior_box_param_->max_sizes_size > 0) {
float max_size = prior_box_param_->max_sizes[k];
float prime = sqrt(min_size * max_size);
output_.emplace_back((cx - prime / step_w * 0.5f) / fmap_w);
output_.emplace_back((cy - prime / step_h * 0.5f) / fmap_h);
output_.emplace_back((cx + prime / step_w * 0.5f) / fmap_w);
output_.emplace_back((cy + prime / step_h * 0.5f) / fmap_h);
}
for (auto v : different_aspect_ratios) {
if (abs(v - 1.0f) < 1e-6) {
continue;
}
float as_square_root = sqrt(v);
float box_w = min_size * as_square_root;
float box_h = min_size / as_square_root;
output_.emplace_back((cx - box_w / step_w * 0.5f) / fmap_w);
output_.emplace_back((cy - box_h / step_h * 0.5f) / fmap_h);
output_.emplace_back((cx + box_w / step_w * 0.5f) / fmap_w);
output_.emplace_back((cy + box_h / step_h * 0.5f) / fmap_h);
}
}
}
}
// do clip
if (prior_box_param_->clip) {
for (auto item : output_) {
if (item > 1.0f) {
item = 1.0f;
}
if (item < 0.0f) {
item = 0.0f;
}
}
}
// variance
for (auto i = 0; i < outputs_[0]->Height() / PRIOR_BOX_VAR_NUM; i++) {
for (auto j = 0; j < PRIOR_BOX_VAR_NUM; j++) {
output_.emplace_back(prior_box_param_->variances[j]);
}
}
return RET_OK;
}
int PriorBoxCPUKernel::PriorBoxImpl(int task_id) {
auto src = output_.data();
auto output = outputs_.at(0);
if (output == nullptr) {
return RET_NULL_PTR;
}
auto ret = PriorBox(src, reinterpret_cast<float *>(output->Data()), output_.size(), task_id, thread_count_);
return ret;
}
int RunPriorBox(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto prior_box = reinterpret_cast<PriorBoxCPUKernel *>(cdata);
auto error_code = prior_box->PriorBoxImpl(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "Resize Run error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
int PriorBoxCPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(RunPriorBox, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "PriorBox run error, error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
kernel::LiteKernel *CpuPriorBoxKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const Context *ctx,
const kernel::KernelKey &desc) {
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Input opParameter is nullptr!";
return nullptr;
}
if (desc.type != schema::PrimitiveType_PriorBox) {
MS_LOG(ERROR) << "PriorBox invalid desc type " << desc.type;
return nullptr;
}
auto *kernel = new (std::nothrow) PriorBoxCPUKernel(opParameter, inputs, outputs, ctx);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new PriorBoxCPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_PriorBox, CpuPriorBoxKernelCreator)
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_PriorBox, CpuPriorBoxKernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_PRIOR_BOX_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_PRIOR_BOX_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/opclib/reshape_parameter.h"
#include "src/runtime/kernel/arm/opclib/prior_box.h"
using mindspore::lite::Context;
namespace mindspore::kernel {
class PriorBoxCPUKernel : public LiteKernel {
public:
PriorBoxCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->threadNum) {
prior_box_param_ = reinterpret_cast<PriorBoxParameter *>(opParameter);
}
~PriorBoxCPUKernel() = default;
int Init() override;
int ReSize() override { return 0; }
int Run() override;
int PriorBoxImpl(int task_id);
protected:
int thread_count_;
const Context *ctx_;
private:
std::vector<float> output_;
PriorBoxParameter *prior_box_param_;
int GeneratePriorBox();
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_PRIOR_BOX_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory.h>
#include "src/runtime/kernel/arm/opclib/errorcode.h"
#include "src/runtime/kernel/arm/opclib/prior_box.h"
int PriorBox(const float *input_data, float *output_data, const size_t size, const int tid, const int thread_num) {
size_t unit_size = size / thread_num;
if (tid == thread_num - 1) {
size_t tail_size = size - unit_size * tid;
(void)memcpy(output_data + tid * unit_size, input_data + tid * unit_size, tail_size * sizeof(float));
} else {
(void)memcpy(output_data + tid * unit_size, input_data + tid * unit_size, unit_size * sizeof(float));
}
return OPCLIB_OK;
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRIOR_BOX_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRIOR_BOX_H_
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#include <memory.h>
#include "src/runtime/kernel/arm/opclib/op_base.h"
#define PRIOR_BOX_MAX_NUM 8
#define PRIOR_BOX_VAR_NUM 4
struct PriorBoxParameter {
OpParameter op_parameter_;
int32_t min_sizes_size;
int32_t min_sizes[PRIOR_BOX_MAX_NUM];
int32_t max_sizes_size;
int32_t max_sizes[PRIOR_BOX_MAX_NUM];
int32_t aspect_ratios_size;
float aspect_ratios[PRIOR_BOX_MAX_NUM];
float variances[PRIOR_BOX_VAR_NUM];
int32_t image_size_w;
int32_t image_size_h;
float step_w;
float step_h;
bool clip;
bool flip;
float offset;
};
int PriorBox(const float *input_data, float *output_data, const size_t size, const int tid, const int thread_num);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_PRIOR_BOX_H_
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册