提交 3c4f621d 编写于 作者: O ougongchang

fix the summary operator is not work in constant folding scene

The summary operator will be optimized when it return the origin value
in constant folding scene. So I return a None value to avoid this.
上级 11d78e9c
......@@ -32,6 +32,13 @@ def _check_summary_param(name, value, class_name):
validator.check_value_type('value', v_type, [type(mstype.tensor)], class_name)
# Note: The return value of the summary operator is not used,
# so there's nothing special about the return `dtype` or `shape`, any value is ok.
# The `value` should be set to None, else summary operators may be optimized at compile graph phase,
# it cause summary operators can not record data in constant folding scene.
SUMMARY_RETURN_VALUE = {'dtype': mstype.int32, 'shape': [1], 'value': None}
class ScalarSummary(PrimitiveWithInfer):
"""
Output scalar to protocol buffer through scalar summary operator.
......@@ -67,7 +74,7 @@ class ScalarSummary(PrimitiveWithInfer):
raise ValueError(f"For 'value' the type should be scalar, "
f"shape should be [] or [1] in {self.__class__.__name__}, but got {v_shape}.")
return value
return SUMMARY_RETURN_VALUE
class ImageSummary(PrimitiveWithInfer):
......@@ -104,7 +111,7 @@ class ImageSummary(PrimitiveWithInfer):
raise ValueError(f"For 'value' the dim should be {image_dim} in {self.__class__.__name__},"
f" but got {len(v_shape)}.")
return value
return SUMMARY_RETURN_VALUE
class TensorSummary(PrimitiveWithInfer):
......@@ -142,7 +149,7 @@ class TensorSummary(PrimitiveWithInfer):
raise ValueError(f"For 'value' the type should be tensor in {self.__class__.__name__}, "
f"shape should not be [].")
return value
return SUMMARY_RETURN_VALUE
class HistogramSummary(PrimitiveWithInfer):
......@@ -180,7 +187,7 @@ class HistogramSummary(PrimitiveWithInfer):
raise ValueError(f"For 'value' the type should be tensor in {self.__class__.__name__}, "
f"shape should not be [].")
return value
return SUMMARY_RETURN_VALUE
class InsertGradientOf(PrimitiveWithInfer):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册