Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
3b54e552
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3b54e552
编写于
9月 08, 2020
作者:
W
wilfChen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gpu maximum & minimum kernel with fp16 input
上级
202795eb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
44 addition
and
1 deletion
+44
-1
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/broadcast_impl.cu
...c/backend/kernel_compiler/gpu/cuda_impl/broadcast_impl.cu
+2
-1
tests/st/ops/gpu/test_broadcast_op.py
tests/st/ops/gpu/test_broadcast_op.py
+42
-0
未找到文件。
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/broadcast_impl.cu
浏览文件 @
3b54e552
...
...
@@ -202,7 +202,8 @@ void ElewiseArith(const int &nums, enum BroadcastOpType op, const T *x0, const T
template
<
>
void
ElewiseArith
(
const
int
&
nums
,
enum
BroadcastOpType
op
,
const
half
*
x0
,
const
half
*
x1
,
half
*
y
,
cudaStream_t
stream
)
{
if
(
nums
%
2
==
0
)
{
// `>` return true iff both half result are true. fallback to half
if
(
nums
%
2
==
0
&&
op
!=
BROADCAST_TYPE_MINIMUM
&&
op
!=
BROADCAST_TYPE_MAXIMUM
&&
op
!=
BROADCAST_TYPE_ABSGRAD
)
{
ElewiseArithKernel
<
half2
>
(
nums
/
2
,
op
,
reinterpret_cast
<
const
half2
*>
(
x0
),
reinterpret_cast
<
const
half2
*>
(
x1
),
reinterpret_cast
<
half2
*>
(
y
),
stream
);
}
else
{
...
...
tests/st/ops/gpu/test_broadcast_op.py
浏览文件 @
3b54e552
...
...
@@ -68,6 +68,48 @@ def test_nobroadcast():
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_nobroadcast_fp16
():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
'GPU'
)
x1_np
=
np
.
random
.
rand
(
10
,
20
).
astype
(
np
.
float16
)
x2_np
=
np
.
random
.
rand
(
10
,
20
).
astype
(
np
.
float16
)
output_ms
=
P
.
Minimum
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
np
.
minimum
(
x1_np
,
x2_np
)
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
Maximum
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
np
.
maximum
(
x1_np
,
x2_np
)
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
Greater
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
x1_np
>
x2_np
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
Less
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
x1_np
<
x2_np
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
Pow
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
np
.
power
(
x1_np
,
x2_np
)
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
RealDiv
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
x1_np
/
x2_np
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
Mul
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
x1_np
*
x2_np
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
output_ms
=
P
.
Sub
()(
Tensor
(
x1_np
),
Tensor
(
x2_np
))
output_np
=
x1_np
-
x2_np
assert
np
.
allclose
(
output_ms
.
asnumpy
(),
output_np
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录