提交 3aeb91ee 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1443 Add parallel operator for Sigmoid

Merge pull request !1443 from yangzhenzhang/add-sigmoid-op
......@@ -122,6 +122,7 @@ REGISTER(AssignSubInfo);
REGISTER(ReLUInfo);
REGISTER(GatherV2Info);
REGISTER(SqrtInfo);
REGISTER(SigmoidInfo);
REGISTER(GetNextInfo);
REGISTER(NegInfo);
REGISTER(BatchMatMulInfo);
......
......@@ -211,6 +211,14 @@ class SquareInfo : public ActivationOther {
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
~SquareInfo() override = default;
};
class SigmoidInfo : public ActivationOther {
public:
SigmoidInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
~SigmoidInfo() override = default;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_
......@@ -48,74 +48,6 @@
namespace mindspore {
namespace parallel {
// splittable_op_ will continuously be updated
std::vector<std::string> splittable_op_ = {MATMUL,
GELU,
TANH,
SOFTMAX,
LOG_SOFTMAX,
ACTIVATION,
PRELU,
FLOORDIV,
L2_NORMALIZE,
TRANSPOSE,
RESHAPE,
TENSOR_ADD,
SUB,
MUL,
DIV,
GREATER,
MAXPOOL,
MAXPOOLV2,
VIRTUAL_DATA_SET,
SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
RELU,
ONEHOT,
DROPOUT_DO_MASK,
REDUCE_MAX,
REDUCE_MIN,
ARGMAXWITHVALUE,
ARGMINWITHVALUE,
REDUCE_SUM,
CONV2D,
FUSE_BATCH_NORM,
POOLING,
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
SIGMOID_CROSS_ENTROPY_WITH_LOGITS,
MAX_POOL_WITH_ARGMAX,
SIMPLE_MEAN,
FLATTEN,
BATCH_NORM,
LAYER_NORM,
BIAS_ADD,
ASSIGN_SUB,
COS,
ACOS,
EXP,
LOG,
REDUCE_MEAN,
REAL_DIV,
SIGMOID,
POW,
MAXIMUM,
MINIMUM,
EQUAL,
NOT_EQUAL,
LOGICALNOT,
GATHERV2,
STRIDEDSLICE,
SQRT,
GET_NEXT,
CAST,
NEG,
SQUARE,
BATCH_MATMUL,
EXPAND_DIMS,
SQUEEZE};
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT, CAST,
POW, EXP, LOG, COS, ACOS, LOGICALNOT, NEG, SQUARE};
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
MS_EXCEPTION_IF_NULL(root);
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
......@@ -314,14 +246,27 @@ std::vector<TypePtr> ExtractOutputTypeByNode(const CNodePtr &node) {
}
bool IsElementWiseOperator(const std::string &op_name) {
auto iter = std::find(elementwise_op_.begin(), elementwise_op_.end(), op_name);
return (iter != elementwise_op_.end());
static const std::set<std::string> elementwise_op = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU,
SQRT, CAST, POW, EXP, LOG, COS,
ACOS, LOGICALNOT, NEG, SQUARE, SIGMOID};
auto iter = elementwise_op.find(op_name);
return (iter != elementwise_op.end());
}
bool IsSplittableOperator(const std::string &op_name) {
std::vector<std::string>::iterator iter;
iter = std::find(splittable_op_.begin(), splittable_op_.end(), op_name);
return (iter != splittable_op_.end());
// clang-format off
static const std::set<std::string> splittable_op =
{MATMUL, TRANSPOSE, GELU, TANH, SOFTMAX, SUB, MUL, DIV, RESHAPE, GREATER, LOG_SOFTMAX, ACTIVATION, PRELU,
FLOORDIV, L2_NORMALIZE, TENSOR_ADD, MAXPOOL, MAXPOOLV2, VIRTUAL_DATA_SET, RELU, ONEHOT, DROPOUT_DO_MASK,
REDUCE_MAX, REDUCE_MIN, ARGMAXWITHVALUE, ARGMINWITHVALUE, REDUCE_SUM, CONV2D, FUSE_BATCH_NORM, POOLING,
MAX_POOL_WITH_ARGMAX, SIMPLE_MEAN, FLATTEN, BATCH_NORM, LAYER_NORM, BIAS_ADD, ASSIGN_SUB, COS, ACOS, EXP,
LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT,
STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE,
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS};
// clang-format on
auto iter = splittable_op.find(op_name);
return (iter != splittable_op.end());
}
bool IsAutoParallelCareNode(const CNodePtr &cnode) {
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.common.api import _executor
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.sigmoid = P.Sigmoid().set_strategy(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.sigmoid(out)
return out
_x = Tensor(np.ones([64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([64, 32]), dtype=ms.float32)
def compile_net(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_auto_parallel_activation():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = None
net = Net(_w1, strategy1, strategy2)
compile_net(net)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册