Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
37cc6e26
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
37cc6e26
编写于
7月 21, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 21, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3175 add ScatterNdAdd ScatterNdSub ScatterNonAliasingAdd ops
Merge pull request !3175 from fangzehua/scatter_add_vm
上级
28c8a5cc
dde74b22
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
475 addition
and
16 deletion
+475
-16
mindspore/ccsrc/backend/kernel_compiler/tbe/tbe_adapter.cc
mindspore/ccsrc/backend/kernel_compiler/tbe/tbe_adapter.cc
+1
-0
mindspore/ops/_grad/grad_array_ops.py
mindspore/ops/_grad/grad_array_ops.py
+23
-0
mindspore/ops/_op_impl/tbe/__init__.py
mindspore/ops/_op_impl/tbe/__init__.py
+5
-0
mindspore/ops/_op_impl/tbe/reverse_v2_d.py
mindspore/ops/_op_impl/tbe/reverse_v2_d.py
+37
-0
mindspore/ops/_op_impl/tbe/rint.py
mindspore/ops/_op_impl/tbe/rint.py
+37
-0
mindspore/ops/_op_impl/tbe/scatter_nd_add.py
mindspore/ops/_op_impl/tbe/scatter_nd_add.py
+42
-0
mindspore/ops/_op_impl/tbe/scatter_nd_sub.py
mindspore/ops/_op_impl/tbe/scatter_nd_sub.py
+42
-0
mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py
mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py
+39
-0
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+6
-0
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+182
-16
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+61
-0
未找到文件。
mindspore/ccsrc/backend/kernel_compiler/tbe/tbe_adapter.cc
浏览文件 @
37cc6e26
...
...
@@ -37,6 +37,7 @@ static std::map<string, string> tbe_func_adapter_map = {
{
"re_lu6"
,
"relu6"
},
{
"re_lu6_grad"
,
"relu6_grad"
},
{
"re_lu"
,
"relu"
},
{
"reverse_v2"
,
"reverse_v2_d"
},
{
"re_luv2"
,
"relu_v2"
},
{
"p_re_lu"
,
"prelu"
},
{
"p_re_lu_grad"
,
"prelu_grad"
},
...
...
mindspore/ops/_grad/grad_array_ops.py
浏览文件 @
37cc6e26
...
...
@@ -377,6 +377,18 @@ def get_bprop_pack(self):
return
bprop
@
bprop_getters
.
register
(
P
.
ReverseV2
)
def
get_bprop_reverse_v2
(
self
):
"""Generate bprop for ReverseV2"""
axis
=
self
.
axis
def
bprop
(
x
,
out
,
dout
):
reverse_grad
=
P
.
ReverseV2
(
axis
)
dx
=
reverse_grad
(
dout
)
return
(
dx
,)
return
bprop
@
bprop_getters
.
register
(
P
.
Unpack
)
def
get_bprop_unpack
(
self
):
"""Generate bprop for Unpack"""
...
...
@@ -495,6 +507,16 @@ def get_bprop_scatter_nd_update(self):
return
bprop
@
bprop_getters
.
register
(
P
.
ScatterNonAliasingAdd
)
def
get_bprop_scatter_non_aliasing_add_update
(
self
):
"""Generate bprop for ScatterNonAliasingAdd"""
op
=
P
.
GatherNd
()
def
bprop
(
x
,
indices
,
update
,
out
,
dout
):
return
dout
,
zeros_like
(
indices
),
op
(
dout
,
indices
)
return
bprop
@
bprop_getters
.
register
(
P
.
TensorScatterUpdate
)
def
get_bprop_tensor_scatter_update
(
self
):
"""Generate bprop for TensorScatterUpdate"""
...
...
@@ -509,6 +531,7 @@ def get_bprop_tensor_scatter_update(self):
return
bprop
@
bprop_getters
.
register
(
P
.
ScatterMax
)
def
get_bprop_scatter_max
(
self
):
"""Generate bprop for ScatterMax"""
...
...
mindspore/ops/_op_impl/tbe/__init__.py
浏览文件 @
37cc6e26
...
...
@@ -81,6 +81,9 @@ from .sub import _sub_tbe
from
.reduce_mean_d
import
_reduce_mean_d_tbe
from
.scatter_nd
import
_scatter_nd_tbe
from
.scatter_nd_d
import
_scatter_nd_d_tbe
from
.scatter_nd_add
import
_scatter_nd_add_tbe
from
.scatter_nd_sub
import
_scatter_nd_sub_tbe
from
.scatter_non_aliasing_add
import
_scatter_non_aliasing_add_tbe
from
.reduce_mean
import
_reduce_mean_tbe
from
.tile
import
_tile_tbe
from
.atomic_addr_clean
import
_atomic_addr_clean_tbe
...
...
@@ -93,6 +96,8 @@ from .bn_training_update_grad import _bn_training_update_grad_tbe
from
.bn_infer
import
_bn_infer_tbe
from
.bn_infer_grad
import
_bn_infer_grad_tbe
from
.reciprocal
import
_reciprocal_tbe
from
.reverse_v2_d
import
_reverse_v2_d_tbe
from
.rint
import
_rint_tbe
from
.strided_slice_d
import
_strided_slice_d_tbe
from
.strided_slice_grad_d
import
_strided_slice_grad_d_tbe
from
.split_d
import
_split_d_tbe
...
...
mindspore/ops/_op_impl/tbe/reverse_v2_d.py
0 → 100644
浏览文件 @
37cc6e26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ReverseV2D op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
reverse_v2_d_op_info
=
TBERegOp
(
"ReverseV2"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"reverse_v2_d.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"reverse_v2_d"
)
\
.
partial_flag
(
True
)
\
.
op_pattern
(
"dynamicFormat"
)
\
.
attr
(
"axis"
,
"required"
,
"listInt"
,
"all"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
None_None
,
DataType
.
None_None
)
\
.
get_op_info
()
@
op_info_register
(
reverse_v2_d_op_info
)
def
_reverse_v2_d_tbe
():
"""ReverseV2D TBE register"""
return
mindspore/ops/_op_impl/tbe/rint.py
0 → 100644
浏览文件 @
37cc6e26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Rint op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
rint_op_info
=
TBERegOp
(
"Rint"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"rint.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"rint"
)
\
.
partial_flag
(
True
)
\
.
op_pattern
(
"formatAgnostic"
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_None
,
DataType
.
F16_None
)
\
.
dtype_format
(
DataType
.
F32_None
,
DataType
.
F32_None
)
\
.
get_op_info
()
@
op_info_register
(
rint_op_info
)
def
_rint_tbe
():
"""Rint TBE register"""
return
mindspore/ops/_op_impl/tbe/scatter_nd_add.py
0 → 100644
浏览文件 @
37cc6e26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ScatterNdAdd op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
scatter_nd_add_op_info
=
TBERegOp
(
"ScatterNdAdd"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"scatter_nd_add.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"scatter_nd_add"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"use_locking"
,
"optional"
,
"bool"
,
"all"
)
\
.
input
(
0
,
"var"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"indices"
,
False
,
"required"
,
"all"
)
\
.
input
(
2
,
"updates"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"var"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
I32_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
I32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I8_Default
,
DataType
.
I32_Default
,
DataType
.
I8_Default
,
DataType
.
I8_Default
)
\
.
dtype_format
(
DataType
.
U8_Default
,
DataType
.
I32_Default
,
DataType
.
U8_Default
,
DataType
.
U8_Default
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
get_op_info
()
@
op_info_register
(
scatter_nd_add_op_info
)
def
_scatter_nd_add_tbe
():
"""ScatterNdAdd TBE register"""
return
mindspore/ops/_op_impl/tbe/scatter_nd_sub.py
0 → 100644
浏览文件 @
37cc6e26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ScatterNdSub op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
scatter_nd_sub_op_info
=
TBERegOp
(
"ScatterNdSub"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"scatter_nd_sub.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"scatter_nd_sub"
)
\
.
partial_flag
(
True
)
\
.
attr
(
"use_locking"
,
"optional"
,
"bool"
,
"all"
)
\
.
input
(
0
,
"var"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"indices"
,
False
,
"required"
,
"all"
)
\
.
input
(
2
,
"updates"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"var"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
I32_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
I32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I8_Default
,
DataType
.
I32_Default
,
DataType
.
I8_Default
,
DataType
.
I8_Default
)
\
.
dtype_format
(
DataType
.
U8_Default
,
DataType
.
I32_Default
,
DataType
.
U8_Default
,
DataType
.
U8_Default
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
get_op_info
()
@
op_info_register
(
scatter_nd_sub_op_info
)
def
_scatter_nd_sub_tbe
():
"""ScatterNdSub TBE register"""
return
mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py
0 → 100644
浏览文件 @
37cc6e26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ScatterNonAliasingAdd op"""
from
mindspore.ops.op_info_register
import
op_info_register
,
TBERegOp
,
DataType
scatter_non_aliasing_add_op_info
=
TBERegOp
(
"ScatterNonAliasingAdd"
)
\
.
fusion_type
(
"ELEMWISE"
)
\
.
async_flag
(
False
)
\
.
binfile_name
(
"scatter_non_aliasing_add.so"
)
\
.
compute_cost
(
10
)
\
.
kernel_name
(
"scatter_non_aliasing_add"
)
\
.
partial_flag
(
True
)
\
.
input
(
0
,
"x"
,
False
,
"required"
,
"all"
)
\
.
input
(
1
,
"indices"
,
False
,
"required"
,
"all"
)
\
.
input
(
2
,
"updates"
,
False
,
"required"
,
"all"
)
\
.
output
(
0
,
"y"
,
False
,
"required"
,
"all"
)
\
.
dtype_format
(
DataType
.
F16_Default
,
DataType
.
I32_Default
,
DataType
.
F16_Default
,
DataType
.
F16_Default
)
\
.
dtype_format
(
DataType
.
F32_Default
,
DataType
.
I32_Default
,
DataType
.
F32_Default
,
DataType
.
F32_Default
)
\
.
dtype_format
(
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
,
DataType
.
I32_Default
)
\
.
get_op_info
()
@
op_info_register
(
scatter_non_aliasing_add_op_info
)
def
_scatter_non_aliasing_add_tbe
():
"""ScatterNonAliasingAdd TBE register"""
return
mindspore/ops/operations/__init__.py
浏览文件 @
37cc6e26
...
...
@@ -28,6 +28,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
SameTypeShape
,
ScatterAdd
,
ScatterSub
,
ScatterMul
,
ScatterDiv
,
ScatterMax
,
ScatterMin
,
ScatterUpdate
,
ScalarToArray
,
ScalarToTensor
,
ScatterNd
,
ScatterNdUpdate
,
Select
,
Shape
,
Size
,
Slice
,
Split
,
TransShape
,
ParallelConcat
,
ScatterNdAdd
,
ScatterNdSub
,
ScatterNonAliasingAdd
,
ReverseV2
,
Rint
,
Squeeze
,
StridedSlice
,
Tile
,
TensorScatterUpdate
,
Transpose
,
TruncatedNormal
,
TupleToArray
,
UnsortedSegmentMin
,
UnsortedSegmentProd
,
UnsortedSegmentSum
,
SpaceToDepth
,
DepthToSpace
,
SpaceToBatch
,
BatchToSpace
,
...
...
@@ -233,6 +234,11 @@ __all__ = [
'ScatterNd'
,
'ScatterMax'
,
'ScatterMin'
,
'ScatterNdAdd'
,
'ScatterNdSub'
,
'ScatterNonAliasingAdd'
,
'ReverseV2'
,
'Rint'
,
'ResizeNearestNeighbor'
,
'HistogramFixedWidth'
,
'Pad'
,
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
37cc6e26
...
...
@@ -47,8 +47,8 @@ class _ScatterOp(PrimitiveWithInfer):
(
'indices'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T1
),
(
'updates'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
)
)
@
staticmethod
def
_check_scatter_shape
(
x_shape
,
indices_shape
,
updates_shape
,
prim_name
):
def
_check_scatter_shape
(
self
,
x_shape
,
indices_shape
,
updates_shape
,
prim_name
):
if
updates_shape
and
updates_shape
!=
indices_shape
+
x_shape
[
1
:]:
raise
ValueError
(
f
"For '
{
prim_name
}
', the shape of updates should be [] or "
f
"updates_shape = indices_shape + x_shape[1:], but got x_shape:
{
x_shape
}
, "
...
...
@@ -61,7 +61,7 @@ class _ScatterOp(PrimitiveWithInfer):
self
.
init_prim_io_names
(
inputs
=
[
'x'
,
'indices'
,
'updates'
],
outputs
=
[
'y'
])
def
infer_shape
(
self
,
x_shape
,
indices_shape
,
updates_shape
):
_ScatterOp
.
_check_scatter_shape
(
x_shape
,
indices_shape
,
updates_shape
,
self
.
name
)
self
.
_check_scatter_shape
(
x_shape
,
indices_shape
,
updates_shape
,
self
.
name
)
return
x_shape
def
infer_dtype
(
self
,
x_dtype
,
indices_dtype
,
updates_dtype
):
...
...
@@ -71,6 +71,19 @@ class _ScatterOp(PrimitiveWithInfer):
return
x_dtype
class
_ScatterNdOp
(
_ScatterOp
):
"""
Define _ScatterNd operators
"""
def
_check_scatter_shape
(
self
,
x_shape
,
indices_shape
,
updates_shape
,
prim_name
):
validator
.
check
(
'the dimension of x'
,
len
(
x_shape
),
'the dimension of indices'
,
indices_shape
[
-
1
],
Rel
.
GE
)
if
indices_shape
[:
-
1
]
+
x_shape
[
indices_shape
[
-
1
]:]
!=
updates_shape
:
raise
ValueError
(
f
"For '
{
prim_name
}
', the shape of updates should be [] or updates_shape = "
f
"indices_shape[:-1] + x_shape[indices_shape[-1]:], but got x_shape:
{
x_shape
}
, "
f
"indices_shape:
{
indices_shape
}
, updates_shape:
{
updates_shape
}
."
)
def
_check_infer_attr_reduce
(
axis
,
keep_dims
,
prim_name
):
validator
.
check_value_type
(
'keep_dims'
,
keep_dims
,
[
bool
],
prim_name
)
validator
.
check_value_type
(
'axis'
,
axis
,
[
int
,
tuple
],
prim_name
)
...
...
@@ -1759,6 +1772,75 @@ class Slice(PrimitiveWithInfer):
'value'
:
None
}
class
ReverseV2
(
PrimitiveWithInfer
):
"""
Reverse specific dimensions of a tensor.
Args:
axis (Union[tuple(int), list(int)): The indices of the dimensions to reverse.
Inputs:
- **input_x** (Tensor) - The target tensor.
Outputs:
Tensor, has the same shape and type as `input_x`.
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.int32)
>>> op = P.ReverseV2(axis=[1])
>>> output = op(input_x)
[[4, 3, 2, 1], [8, 7, 6, 5]]
"""
@
prim_attr_register
def
__init__
(
self
,
axis
):
validator
.
check_value_type
(
'axis'
,
axis
,
[
list
,
tuple
],
self
.
name
)
for
i
,
each
in
enumerate
(
axis
):
validator
.
check_value_type
(
f
'axis[
{
i
}
]'
,
each
,
[
int
],
self
.
name
)
self
.
axis
=
axis
self
.
init_prim_io_names
(
inputs
=
[
'x'
],
outputs
=
[
'output'
])
def
infer_shape
(
self
,
x_shape
):
dim
=
len
(
x_shape
)
for
i
,
each
in
enumerate
(
self
.
axis
):
validator
.
check_int_range
(
f
'axis[
{
i
}
]'
,
each
,
-
dim
,
dim
,
Rel
.
INC_LEFT
,
self
.
name
)
return
x_shape
def
infer_dtype
(
self
,
x_dtype
):
validator
.
check_tensor_type_same
({
'x'
:
x_dtype
},
(
mstype
.
bool_
,)
+
mstype
.
number_type
,
self
.
name
)
return
x_dtype
class
Rint
(
PrimitiveWithInfer
):
"""
Return element-wise integer closest to x.
Inputs:
- **input_x** (Tensor) - The target tensor, which must be one of the following types:
float16, float32.
Outputs:
Tensor, has the same shape and type as `input_x`.
Examples:
>>> input_x = Tensor(np.array([-1.6, -0.1, 1.5, 2.0]), mindspore.float32)
>>> op = P.Rint()
>>> output = op(input_x)
[-2., 0., 2., 2.]
"""
@
prim_attr_register
def
__init__
(
self
):
self
.
init_prim_io_names
(
inputs
=
[
'x'
],
outputs
=
[
'output'
])
def
infer_shape
(
self
,
x_shape
):
return
x_shape
def
infer_dtype
(
self
,
x_dtype
):
validator
.
check_tensor_type_same
({
'x'
:
x_dtype
},
[
mstype
.
float16
,
mstype
.
float32
],
self
.
name
)
return
x_dtype
class
Select
(
PrimitiveWithInfer
):
r
"""
...
...
@@ -2404,7 +2486,7 @@ class ScatterUpdate(_ScatterOp):
return
x_dtype
class
ScatterNdUpdate
(
PrimitiveWithInfer
):
class
ScatterNdUpdate
(
_ScatterNdOp
):
"""
Update tensor value by using input indices and value.
...
...
@@ -2429,11 +2511,7 @@ class ScatterNdUpdate(PrimitiveWithInfer):
>>> op = P.ScatterNdUpdate()
>>> output = op(input_x, indices, update)
"""
__mindspore_signature__
=
(
(
'x'
,
sig_rw
.
RW_WRITE
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
),
(
'indices'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T1
),
(
'value'
,
sig_rw
.
RW_READ
,
sig_kind
.
KIND_POSITIONAL_KEYWORD
,
sig_kind
.
KIND_EMPTY_DEFAULT_VALUE
,
sig_dtype
.
T
)
)
@
prim_attr_register
def
__init__
(
self
,
use_locking
=
True
):
...
...
@@ -2441,13 +2519,6 @@ class ScatterNdUpdate(PrimitiveWithInfer):
validator
.
check_value_type
(
'use_locking'
,
use_locking
,
[
bool
],
self
.
name
)
self
.
init_prim_io_names
(
inputs
=
[
'x'
,
'indices'
,
'value'
],
outputs
=
[
'y'
])
def
infer_shape
(
self
,
x_shape
,
indices_shape
,
value_shape
):
validator
.
check
(
'the dimension of x'
,
len
(
x_shape
),
'the dimension of indices'
,
indices_shape
[
-
1
],
Rel
.
GE
)
if
indices_shape
[:
-
1
]
+
x_shape
[
indices_shape
[
-
1
]:]
!=
value_shape
:
raise
ValueError
(
"For 'ScatterNdUpdate', input value are not match with input indices."
)
return
x_shape
def
infer_dtype
(
self
,
x_dtype
,
indices_dtype
,
value_dtype
):
validator
.
check_tensor_type_same
({
'indices'
:
indices_dtype
},
[
mstype
.
int32
],
self
.
name
)
args
=
{
"x"
:
x_dtype
,
"value"
:
value_dtype
}
...
...
@@ -2635,6 +2706,101 @@ class ScatterDiv(_ScatterOp):
"""
class
ScatterNdAdd
(
_ScatterNdOp
):
"""
Applies sparse addition to individual values or slices in a Tensor.
Using given values to update tensor value through the add operation, along with the input indices.
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
Args:
use_locking (bool): Whether protect the assignment by a lock. Default: False.
Inputs:
- **input_x** (Parameter) - The target parameter.
- **indices** (Tensor) - The index to do add operation whose data type should be mindspore.int32.
- **updates** (Tensor) - The tensor doing the add operation with `input_x`,
the data type is same as `input_x`, the shape is `indices_shape[:-1] + x_shape[indices_shape[-1]:]`.
Outputs:
Parameter, the updated `input_x`.
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
>>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32)
>>> scatter_nd_add = P.ScatterNdAdd()
>>> output = scatter_nd_add(input_x, indices, updates)
[1, 10, 9, 4, 12, 6, 7, 17]
"""
class
ScatterNdSub
(
_ScatterNdOp
):
"""
Applies sparse subtraction to individual values or slices in a Tensor.
Using given values to update tensor value through the sub operation, along with the input indices.
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
Args:
use_locking (bool): Whether protect the assignment by a lock. Default: False.
Inputs:
- **input_x** (Parameter) - The target parameter.
- **indices** (Tensor) - The index to do add operation whose data type should be mindspore.int32.
- **updates** (Tensor) - The tensor doing the sub operation with `input_x`,
the data type is same as `input_x`, the shape is `indices_shape[:-1] + x_shape[indices_shape[-1]:]`.
Outputs:
Parameter, the updated `input_x`.
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
>>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32)
>>> scatter_nd_sub = P.ScatterNdSub()
>>> output = scatter_nd_sub(input_x, indices, updates)
[1, -6, -3, 4, -2, 6, 7, -1]
"""
class
ScatterNonAliasingAdd
(
_ScatterNdOp
):
"""
Applies sparse addition to input using individual values or slices.
Using given values to update tensor value through the add operation, along with the input indices.
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
Inputs:
- **input_x** (Parameter) - The target parameter.
- **indices** (Tensor) - The index to do add operation whose data type should be mindspore.int32.
- **updates** (Tensor) - The tensor doing the add operation with `input_x`,
the data type is same as `input_x`, the shape is `indices_shape[:-1] + x_shape[indices_shape[-1]:]`.
Outputs:
Parameter, the updated `input_x`.
Examples:
>>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x")
>>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32)
>>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32)
>>> scatter_non_aliasing_add = P.ScatterNonAliasingAdd()
>>> output = scatter_non_aliasing_add(input_x, indices, updates)
[1, 10, 9, 4, 12, 6, 7, 17]
"""
@
prim_attr_register
def
__init__
(
self
):
"""Init ScatterNonAliasingAdd"""
self
.
init_prim_io_names
(
inputs
=
[
'x'
,
'indices'
,
'updates'
],
outputs
=
[
'y'
])
def
infer_dtype
(
self
,
x_dtype
,
indices_dtype
,
updates_dtype
):
validator
.
check_tensor_type_same
({
'indices'
:
indices_dtype
},
[
mstype
.
int32
],
self
.
name
)
args
=
{
"x"
:
x_dtype
,
"updates"
:
updates_dtype
}
validator
.
check_tensor_type_same
(
args
,
[
mstype
.
float16
,
mstype
.
float32
,
mstype
.
int32
],
self
.
name
)
return
x_dtype
class
SpaceToDepth
(
PrimitiveWithInfer
):
r
"""
Rearrange blocks of spatial data into depth.
...
...
tests/ut/python/ops/test_ops.py
浏览文件 @
37cc6e26
...
...
@@ -237,6 +237,44 @@ class ScatterAdd(nn.Cell):
return
out
class
ScatterNonAliasingAdd
(
nn
.
Cell
):
"""ScatterNonAliasingAdd net definition"""
def
__init__
(
self
,
ref_shape
,
dtype
=
np
.
float32
):
super
(
ScatterNonAliasingAdd
,
self
).
__init__
()
self
.
scatter_no_aliasing_add
=
P
.
ScatterNonAliasingAdd
()
self
.
ref
=
Parameter
(
Tensor
(
np
.
ones
(
ref_shape
,
dtype
)),
name
=
"ref"
)
def
construct
(
self
,
indices
,
updates
):
out
=
self
.
scatter_no_aliasing_add
(
self
.
ref
,
indices
,
updates
)
return
out
class
ScatterNdSub
(
nn
.
Cell
):
"""ScatterNdSub net definition"""
def
__init__
(
self
,
ref_shape
,
dtype
=
np
.
float32
):
super
(
ScatterNdSub
,
self
).
__init__
()
self
.
scatter_nd_sub
=
P
.
ScatterNdSub
()
self
.
ref
=
Parameter
(
Tensor
(
np
.
ones
(
ref_shape
,
dtype
)),
name
=
"ref"
)
def
construct
(
self
,
indices
,
updates
):
out
=
self
.
scatter_nd_sub
(
self
.
ref
,
indices
,
updates
)
return
out
class
ScatterNdAdd
(
nn
.
Cell
):
"""ScatterNdAdd net definition"""
def
__init__
(
self
,
ref_shape
,
dtype
=
np
.
float32
):
super
(
ScatterNdAdd
,
self
).
__init__
()
self
.
scatter_nd_add
=
P
.
ScatterNdAdd
()
self
.
ref
=
Parameter
(
Tensor
(
np
.
ones
(
ref_shape
,
dtype
)),
name
=
"ref"
)
def
construct
(
self
,
indices
,
updates
):
out
=
self
.
scatter_nd_add
(
self
.
ref
,
indices
,
updates
)
return
out
class
ScatterSub
(
nn
.
Cell
):
"""ScatterSub net definition"""
...
...
@@ -1811,6 +1849,14 @@ test_case_array_ops = [
'desc_const'
:
[(
2
,
1
,
1
,
2
)],
'desc_inputs'
:
[[
2
,
2
,
2
]],
'desc_bprop'
:
[[
2
,
2
,
2
,
4
]]}),
(
'ReverseV2'
,
{
'block'
:
P
.
ReverseV2
(
axis
=
[
1
]),
'desc_inputs'
:
[(
Tensor
(
np
.
array
([[
1
,
2
,
3
,
4
],
[
5
,
6
,
7
,
8
]]).
astype
(
np
.
float32
)))],
'desc_bprop'
:
[(
Tensor
(
np
.
array
([[
1
,
2
,
3
,
4
],
[
5
,
6
,
7
,
8
]]).
astype
(
np
.
float32
)))]}),
(
'Rint'
,
{
'block'
:
P
.
Rint
(),
'desc_inputs'
:
[(
Tensor
(
np
.
array
([
-
1.6
,
-
0.1
,
1.5
,
2.0
]).
astype
(
np
.
float32
)))],
'skip'
:
[
'backward'
]}),
(
'ConcatV2_0'
,
{
'block'
:
P
.
Concat
(),
'desc_inputs'
:
[
...
...
@@ -2074,6 +2120,21 @@ test_case_other_ops = [
'desc_inputs'
:
(
Tensor
(
np
.
array
([
2
,
0
,
5
],
np
.
int32
)),
Tensor
(
np
.
array
([
2.0
,
3.0
,
4.0
],
np
.
float32
))),
'skip'
:
[
'backward'
]}),
(
'ScatterNonAliasingAdd_1d'
,
{
'block'
:
ScatterNonAliasingAdd
((
8
,)),
'desc_inputs'
:
(
Tensor
(
np
.
array
([[
2
],
[
3
],
[
4
],
[
5
]],
np
.
int32
)),
Tensor
(
np
.
array
([
2.0
,
3.0
,
4.0
,
8.0
],
np
.
float32
))),
'skip'
:
[
'backward'
]}),
(
'ScatterNdAdd'
,
{
'block'
:
ScatterNdAdd
((
8
,)),
'desc_inputs'
:
(
Tensor
(
np
.
array
([[
2
],
[
3
],
[
4
],
[
5
]],
np
.
int32
)),
Tensor
(
np
.
array
([
2.0
,
3.0
,
4.0
,
8.0
],
np
.
float32
))),
'skip'
:
[
'backward'
]}),
(
'ScatterNdSub'
,
{
'block'
:
ScatterNdAdd
((
8
,)),
'desc_inputs'
:
(
Tensor
(
np
.
array
([[
2
],
[
3
],
[
4
],
[
5
]],
np
.
int32
)),
Tensor
(
np
.
array
([
2.0
,
3.0
,
4.0
,
8.0
],
np
.
float32
))),
'skip'
:
[
'backward'
]}),
(
'ScatterAdd'
,
{
'block'
:
ScatterAdd
((
6
,)),
'desc_inputs'
:
(
Tensor
(
np
.
array
([
2
,
0
,
5
],
np
.
int32
)),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录