Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
3617121c
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3617121c
编写于
8月 04, 2020
作者:
S
simson
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert modification of opt
上级
b0b4fa08
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
23 addition
and
22 deletion
+23
-22
mindspore/nn/optim/adam.py
mindspore/nn/optim/adam.py
+4
-4
mindspore/nn/optim/ftrl.py
mindspore/nn/optim/ftrl.py
+1
-1
mindspore/nn/optim/lamb.py
mindspore/nn/optim/lamb.py
+3
-3
mindspore/nn/optim/lazyadam.py
mindspore/nn/optim/lazyadam.py
+1
-1
mindspore/nn/optim/momentum.py
mindspore/nn/optim/momentum.py
+2
-2
mindspore/nn/optim/optimizer.py
mindspore/nn/optim/optimizer.py
+3
-3
mindspore/nn/optim/proximal_ada_grad.py
mindspore/nn/optim/proximal_ada_grad.py
+2
-2
mindspore/nn/optim/rmsprop.py
mindspore/nn/optim/rmsprop.py
+2
-2
mindspore/nn/optim/sgd.py
mindspore/nn/optim/sgd.py
+3
-2
tests/ut/python/parallel/test_loss_and_optimizer.py
tests/ut/python/parallel/test_loss_and_optimizer.py
+2
-2
未找到文件。
mindspore/nn/optim/adam.py
浏览文件 @
3617121c
...
...
@@ -40,7 +40,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay, param, m, v, gradient, d
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay (Number): Weight decay. Should be
in range [0.0, 1.0]
.
weight_decay (Number): Weight decay. Should be
equal to or greater than 0
.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
v (Tensor): v value of parameters.
...
...
@@ -200,8 +200,8 @@ class Adam(Optimizer):
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
weight_decay (float): Weight decay (L2 penalty). It should be
in range [0.0, 1.0]
. Default: 0.0.
loss_scale (float): A floating point value for the loss scale. Should be
not less than 1.
0. Default: 1.0.
weight_decay (float): Weight decay (L2 penalty). It should be
equal to or greater than 0
. Default: 0.0.
loss_scale (float): A floating point value for the loss scale. Should be
greater than
0. Default: 1.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
...
...
@@ -318,7 +318,7 @@ class AdamWeightDecay(Optimizer):
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). It should be
in range [0.0, 1.0]
. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). It should be
equal to or greater than 0
. Default: 0.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
...
...
mindspore/nn/optim/ftrl.py
浏览文件 @
3617121c
...
...
@@ -116,7 +116,7 @@ class FTRL(Optimizer):
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
use_locking (bool): If True use locks for update operation. Default: False.
loss_scale (float): Value for the loss scale. It should be equal to or greater than 1.0. Default: 1.0.
weight_decay (float): Weight decay value to multiply weight,
should be in range [0.0, 1.0]
. Default: 0.0.
weight_decay (float): Weight decay value to multiply weight,
must be zero or positive value
. Default: 0.0.
Inputs:
- **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
...
...
mindspore/nn/optim/lamb.py
浏览文件 @
3617121c
...
...
@@ -43,7 +43,7 @@ def _update_run_op(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay (Number): Weight decay. Should be
in range [0.0, 1.0]
.
weight_decay (Number): Weight decay. Should be
equal to or greater than 0
.
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
...
...
@@ -126,7 +126,7 @@ def _update_run_op_graph_kernel(beta1, beta2, eps, global_step, lr, weight_decay
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay (Number): Weight decay. Should be
in range [0.0, 1.0]
.
weight_decay (Number): Weight decay. Should be
equal to or greater than 0
.
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
...
...
@@ -227,7 +227,7 @@ class Lamb(Optimizer):
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0. Should be
in range [0.0, 1.0]
.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0. Should be
equal to or greater than 0
.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
...
...
mindspore/nn/optim/lazyadam.py
浏览文件 @
3617121c
...
...
@@ -133,7 +133,7 @@ class LazyAdam(Optimizer):
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
loss_scale (float): A floating point value for the loss scale.
It should be not less than 1.0
. Default:
loss_scale (float): A floating point value for the loss scale.
Should be equal to or greater than 1
. Default:
1.0.
Inputs:
...
...
mindspore/nn/optim/momentum.py
浏览文件 @
3617121c
...
...
@@ -92,8 +92,8 @@ class Momentum(Optimizer):
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
momentum (float): Hyperparameter of type float, means momentum for the moving average.
It should be at least 0.0.
weight_decay (int, float): Weight decay (L2 penalty). It should be
in range [0.0, 1.0]
. Default: 0.0.
loss_scale (int, float): A floating point value for the loss scale.
Should be not less than 1
.0. Default: 1.0.
weight_decay (int, float): Weight decay (L2 penalty). It should be
equal to or greater than 0.0
. Default: 0.0.
loss_scale (int, float): A floating point value for the loss scale.
It should be greater than 0
.0. Default: 1.0.
use_nesterov (bool): Enable Nesterov momentum. Default: False.
Inputs:
...
...
mindspore/nn/optim/optimizer.py
浏览文件 @
3617121c
...
...
@@ -78,9 +78,9 @@ class Optimizer(Cell):
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
weight_decay (float): A floating point value for the weight decay. It should be
in range [0.0, 1.0]
.
weight_decay (float): A floating point value for the weight decay. It should be
equal to or greater than 0
.
If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0.
loss_scale (float): A floating point value for the loss scale. It should be
not less than 1.
0. If the
loss_scale (float): A floating point value for the loss scale. It should be
greater than
0. If the
type of `loss_scale` input is int, it will be converted to float. Default: 1.0.
Raises:
...
...
@@ -102,7 +102,7 @@ class Optimizer(Cell):
if
isinstance
(
loss_scale
,
int
):
loss_scale
=
float
(
loss_scale
)
validator
.
check_value_type
(
"loss_scale"
,
loss_scale
,
[
float
],
self
.
cls_name
)
validator
.
check_number_range
(
"loss_scale"
,
loss_scale
,
1.0
,
float
(
"inf"
),
Rel
.
INC_LEFT
,
self
.
cls_name
)
validator
.
check_number_range
(
"loss_scale"
,
loss_scale
,
0.0
,
float
(
"inf"
),
Rel
.
INC_NEITHER
,
self
.
cls_name
)
self
.
loss_scale
=
loss_scale
weight_decay
=
self
.
_preprocess_weight_decay
(
weight_decay
)
...
...
mindspore/nn/optim/proximal_ada_grad.py
浏览文件 @
3617121c
...
...
@@ -98,8 +98,8 @@ class ProximalAdagrad(Optimizer):
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
use_locking (bool): If True use locks for update operation. Default: False.
loss_scale (float): Value for the loss scale. It should be
not less than 1
.0. Default: 1.0.
weight_decay (float): Weight decay value to multiply weight,
should be in range [0.0, 1.0]
. Default: 0.0.
loss_scale (float): Value for the loss scale. It should be
greater than 0
.0. Default: 1.0.
weight_decay (float): Weight decay value to multiply weight,
must be zero or positive value
. Default: 0.0.
Inputs:
- **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
...
...
mindspore/nn/optim/rmsprop.py
浏览文件 @
3617121c
...
...
@@ -121,8 +121,8 @@ class RMSProp(Optimizer):
0. Default: 1e-10.
use_locking (bool): Enable a lock to protect the update of variable and accumlation tensors. Default: False.
centered (bool): If True, gradients are normalized by the estimated variance of the gradient. Default: False.
loss_scale (float): A floating point value for the loss scale. Should be
not less than 1.
0. Default: 1.0.
weight_decay (float): Weight decay (L2 penalty). Should be
in range [0.0, 1.0]
. Default: 0.0.
loss_scale (float): A floating point value for the loss scale. Should be
greater than
0. Default: 1.0.
weight_decay (float): Weight decay (L2 penalty). Should be
equal to or greater than 0
. Default: 0.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
...
...
mindspore/nn/optim/sgd.py
浏览文件 @
3617121c
...
...
@@ -88,10 +88,11 @@ class SGD(Optimizer):
Default: 0.1.
momentum (float): A floating point value the momentum. should be at least 0.0. Default: 0.0.
dampening (float): A floating point value of dampening for momentum. should be at least 0.0. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). It should be
in range [0.0, 1.0]
. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). It should be
equal to or greater than 0
. Default: 0.0.
nesterov (bool): Enables the Nesterov momentum. If use nesterov, momentum must be positive,
and dampening must equal to 0.0. Default: False.
loss_scale (float): A floating point value for the loss scale. Should be not less than 1.0. Default: 1.0.
loss_scale (float): A floating point value for the loss scale, which should be larger
than 0.0. Default: 1.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
...
...
tests/ut/python/parallel/test_loss_and_optimizer.py
浏览文件 @
3617121c
...
...
@@ -98,7 +98,7 @@ def test_momentum_with_loss_scale():
net
=
Net
(
strategy1
,
strategy2
,
weight
)
optimizer
=
Momentum
(
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
,
loss_scale
=
1.0
)
optimizer
=
Momentum
(
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
,
loss_scale
=
0.5
)
net_with_loss
=
NetWithLoss
(
net
,
strategy3
)
...
...
@@ -169,7 +169,7 @@ def test_momentum_with_loss_scale_and_dynamic_lr():
net
=
Net
(
strategy1
,
strategy2
,
weight
)
lr
=
Tensor
(
np
.
ones
([
6
]),
dtype
=
ms
.
float32
)
optimizer
=
Momentum
(
net
.
trainable_params
(),
learning_rate
=
lr
,
momentum
=
0.9
,
loss_scale
=
1.0
)
optimizer
=
Momentum
(
net
.
trainable_params
(),
learning_rate
=
lr
,
momentum
=
0.9
,
loss_scale
=
0.5
)
net_with_loss
=
NetWithLoss
(
net
,
strategy3
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录