Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
352c6faf
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
352c6faf
编写于
3月 31, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
3月 31, 2020
浏览文件
操作
浏览文件
下载
差异文件
!18 enable use float type learning rate in lars optimizer
Merge pull request !18 from gziyan/master
上级
da447b8d
4cbcd8e9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
24 addition
and
4 deletion
+24
-4
mindspore/nn/optim/lars.py
mindspore/nn/optim/lars.py
+6
-3
tests/ut/python/nn/optim/test_lars.py
tests/ut/python/nn/optim/test_lars.py
+18
-1
未找到文件。
mindspore/nn/optim/lars.py
浏览文件 @
352c6faf
...
@@ -13,12 +13,14 @@
...
@@ -13,12 +13,14 @@
# limitations under the License.
# limitations under the License.
# ============================================================================
# ============================================================================
"""lars optimizer"""
"""lars optimizer"""
from
typing
import
Iterable
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
dtype
as
mstype
from
mindspore.common
import
Tensor
from
mindspore.common.initializer
import
initializer
from
mindspore.common.initializer
import
initializer
from
mindspore.common.parameter
import
Parameter
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
composite
as
C
from
mindspore.ops
import
composite
as
C
from
mindspore.ops
import
functional
as
F
from
mindspore.ops
import
functional
as
F
from
mindspore.common.parameter
import
Parameter
from
mindspore.nn.cell
import
Cell
from
mindspore.nn.cell
import
Cell
from
.optimizer
import
grad_scale
from
.optimizer
import
grad_scale
...
@@ -111,7 +113,8 @@ class LARS(Cell):
...
@@ -111,7 +113,8 @@ class LARS(Cell):
self
.
gather
=
None
self
.
gather
=
None
self
.
global_step
=
None
self
.
global_step
=
None
self
.
axis
=
None
self
.
axis
=
None
if
not
isinstance
(
self
.
learning_rate
,
float
):
if
isinstance
(
self
.
learning_rate
.
default_input
,
Iterable
)
or
\
(
isinstance
(
self
.
learning_rate
.
default_input
,
Tensor
)
and
self
.
learning_rate
.
default_input
.
dim
()
==
1
):
self
.
dynamic_lr
=
True
self
.
dynamic_lr
=
True
self
.
assignadd
=
P
.
AssignAdd
()
self
.
assignadd
=
P
.
AssignAdd
()
self
.
gather
=
P
.
GatherV2
()
self
.
gather
=
P
.
GatherV2
()
...
@@ -124,7 +127,7 @@ class LARS(Cell):
...
@@ -124,7 +127,7 @@ class LARS(Cell):
lr
=
self
.
gather
(
self
.
learning_rate
,
self
.
global_step
,
self
.
axis
)
lr
=
self
.
gather
(
self
.
learning_rate
,
self
.
global_step
,
self
.
axis
)
F
.
control_depend
(
lr
,
self
.
assignadd
(
self
.
global_step
,
1
))
F
.
control_depend
(
lr
,
self
.
assignadd
(
self
.
global_step
,
1
))
else
:
else
:
lr
=
F
.
scalar_to_array
(
self
.
learning_rate
)
lr
=
self
.
learning_rate
if
self
.
reciprocal_scale
!=
1.0
:
if
self
.
reciprocal_scale
!=
1.0
:
gradients
=
self
.
hyper_map
(
F
.
partial
(
grad_scale
,
self
.
reciprocal_scale
),
gradients
)
gradients
=
self
.
hyper_map
(
F
.
partial
(
grad_scale
,
self
.
reciprocal_scale
),
gradients
)
...
...
tests/ut/python/nn/optim/test_lars.py
浏览文件 @
352c6faf
...
@@ -46,7 +46,7 @@ class Net(nn.Cell):
...
@@ -46,7 +46,7 @@ class Net(nn.Cell):
return
x
return
x
def
test_lars
():
def
test_lars
_multi_step_lr
():
inputs
=
Tensor
(
np
.
ones
([
1
,
64
]).
astype
(
np
.
float32
))
inputs
=
Tensor
(
np
.
ones
([
1
,
64
]).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
zeros
([
1
,
10
]).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
zeros
([
1
,
10
]).
astype
(
np
.
float32
))
net
=
Net
()
net
=
Net
()
...
@@ -61,3 +61,20 @@ def test_lars():
...
@@ -61,3 +61,20 @@ def test_lars():
net_with_loss
=
WithLossCell
(
net
,
loss
)
net_with_loss
=
WithLossCell
(
net
,
loss
)
train_network
=
TrainOneStepCell
(
net_with_loss
,
optimizer
)
train_network
=
TrainOneStepCell
(
net_with_loss
,
optimizer
)
_executor
.
compile
(
train_network
,
inputs
,
label
)
_executor
.
compile
(
train_network
,
inputs
,
label
)
def
test_lars_float_lr
():
inputs
=
Tensor
(
np
.
ones
([
1
,
64
]).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
zeros
([
1
,
10
]).
astype
(
np
.
float32
))
net
=
Net
()
net
.
set_train
()
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
()
lr
=
0.1
SGD
=
Momentum
(
net
.
trainable_params
(),
lr
,
0.9
)
optimizer
=
LARS
(
SGD
,
epsilon
=
1e-08
,
hyperpara
=
0.02
,
decay_filter
=
lambda
x
:
'bn'
not
in
x
.
name
,
lars_filter
=
lambda
x
:
'bn'
not
in
x
.
name
)
net_with_loss
=
WithLossCell
(
net
,
loss
)
train_network
=
TrainOneStepCell
(
net_with_loss
,
optimizer
)
_executor
.
compile
(
train_network
,
inputs
,
label
)
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录