Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
3259dafa
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3259dafa
编写于
8月 19, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 19, 2020
浏览文件
操作
浏览文件
下载
差异文件
!4712 Fix bugs in random ops
Merge pull request !4712 from peixu_ren/custom_pp_ops
上级
6868b9b6
2830d704
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
17 addition
and
23 deletion
+17
-23
mindspore/ops/composite/random_ops.py
mindspore/ops/composite/random_ops.py
+7
-13
mindspore/ops/operations/random_ops.py
mindspore/ops/operations/random_ops.py
+10
-10
未找到文件。
mindspore/ops/composite/random_ops.py
浏览文件 @
3259dafa
...
...
@@ -35,12 +35,12 @@ def set_seed(seed):
random seed.
Args:
seed(Int): the graph-level seed value that to be set.
seed(Int): the graph-level seed value that to be set.
Must be non-negative.
Examples:
>>> C.set_seed(10)
"""
const_utils
.
check_
int_posi
tive
(
"seed"
,
seed
,
"set_seed"
)
const_utils
.
check_
non_nega
tive
(
"seed"
,
seed
,
"set_seed"
)
global
_GRAPH_SEED
_GRAPH_SEED
=
seed
...
...
@@ -56,7 +56,7 @@ def get_seed():
Interger. The current graph-level seed.
Examples:
>>> C.get_seed(
10
)
>>> C.get_seed()
"""
return
_GRAPH_SEED
...
...
@@ -70,7 +70,7 @@ def normal(shape, mean, stddev, seed=0):
With float32 data type.
stddev (Tensor): The deviation σ distribution parameter. With float32 data type.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Must be non-negative.
Default: 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
...
...
@@ -107,7 +107,7 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32):
It defines the maximum possibly generated value. With int32 or float32 data type.
If dtype is int32, only one number is allowed.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Must be non-negative.
Default: 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
...
...
@@ -151,7 +151,7 @@ def gamma(shape, alpha, beta, seed=0):
alpha (Tensor): The alpha α distribution parameter. With float32 data type.
beta (Tensor): The beta β distribution parameter. With float32 data type.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Must be non-negative.
Default: 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of alpha and beta.
...
...
@@ -163,10 +163,6 @@ def gamma(shape, alpha, beta, seed=0):
>>> beta = Tensor(1.0, mstype.float32)
>>> output = C.gamma(shape, alpha, beta, seed=5)
"""
alpha_dtype
=
F
.
dtype
(
alpha
)
beta_dtype
=
F
.
dtype
(
beta
)
const_utils
.
check_tensors_dtype_same
(
alpha_dtype
,
mstype
.
float32
,
"gamma"
)
const_utils
.
check_tensors_dtype_same
(
beta_dtype
,
mstype
.
float32
,
"gamma"
)
const_utils
.
check_non_negative
(
"seed"
,
seed
,
"gamma"
)
seed1
=
get_seed
()
seed2
=
seed
...
...
@@ -182,7 +178,7 @@ def poisson(shape, mean, seed=0):
shape (tuple): The shape of random tensor to be generated.
mean (Tensor): The mean μ distribution parameter. With float32 data type.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Must be non-negative.
Default: 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean.
...
...
@@ -193,8 +189,6 @@ def poisson(shape, mean, seed=0):
>>> mean = Tensor(1.0, mstype.float32)
>>> output = C.poisson(shape, mean, seed=5)
"""
mean_dtype
=
F
.
dtype
(
mean
)
const_utils
.
check_tensors_dtype_same
(
mean_dtype
,
mstype
.
float32
,
"poisson"
)
const_utils
.
check_non_negative
(
"seed"
,
seed
,
"poisson"
)
seed1
=
get_seed
()
seed2
=
seed
...
...
mindspore/ops/operations/random_ops.py
浏览文件 @
3259dafa
...
...
@@ -27,8 +27,8 @@ class StandardNormal(PrimitiveWithInfer):
Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
Args:
seed (int): Random seed. Default: 0.
seed2 (int): Random seed2. Default: 0.
seed (int): Random seed.
Must be non-negative.
Default: 0.
seed2 (int): Random seed2.
Must be non-negative.
Default: 0.
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
...
...
@@ -125,8 +125,8 @@ class Gamma(PrimitiveWithInfer):
\text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}},
Args:
seed (int): Random seed. Default: 0.
seed2 (int): Random seed2. Default: 0.
seed (int): Random seed.
Must be non-negative.
Default: 0.
seed2 (int): Random seed2.
Must be non-negative.
Default: 0.
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
...
...
@@ -180,8 +180,8 @@ class Poisson(PrimitiveWithInfer):
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!},
Args:
seed (int): Random seed. Default: 0.
seed2 (int): Random seed2. Default: 0.
seed (int): Random seed.
Must be non-negative.
Default: 0.
seed2 (int): Random seed2.
Must be non-negative.
Default: 0.
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
...
...
@@ -234,8 +234,8 @@ class UniformInt(PrimitiveWithInfer):
The number in tensor a should be strictly less than b at any position after broadcasting.
Args:
seed (int): Random seed. Default: 0.
seed2 (int): Random seed2. Default: 0.
seed (int): Random seed.
Must be non-negative.
Default: 0.
seed2 (int): Random seed2.
Must be non-negative.
Default: 0.
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
...
...
@@ -287,8 +287,8 @@ class UniformReal(PrimitiveWithInfer):
Produces random floating-point values i, uniformly distributed on the interval [0, 1).
Args:
seed (int): Random seed. Default: 0.
seed2 (int): Random seed2. Default: 0.
seed (int): Random seed.
Must be non-negative.
Default: 0.
seed2 (int): Random seed2.
Must be non-negative.
Default: 0.
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录