Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
30000fdb
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30000fdb
编写于
8月 04, 2020
作者:
H
huanghui
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ReduceMin fission pass
上级
cdc51318
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
310 addition
and
22 deletion
+310
-22
mindspore/ccsrc/backend/optimizer/ascend/ascend_backend_optimization.cc
...c/backend/optimizer/ascend/ascend_backend_optimization.cc
+26
-22
mindspore/ccsrc/backend/optimizer/ascend/ir_fission/reduce_min_fission.cc
...backend/optimizer/ascend/ir_fission/reduce_min_fission.cc
+144
-0
mindspore/ccsrc/backend/optimizer/ascend/ir_fission/reduce_min_fission.h
.../backend/optimizer/ascend/ir_fission/reduce_min_fission.h
+33
-0
tests/ut/cpp/pre_activate/ascend/ir_fission/reduce_min_fission_test.cc
...pre_activate/ascend/ir_fission/reduce_min_fission_test.cc
+56
-0
tests/ut/cpp/python_input/gtest_input/pre_activate/reduce_min_fission_test.py
...input/gtest_input/pre_activate/reduce_min_fission_test.py
+51
-0
未找到文件。
mindspore/ccsrc/backend/optimizer/ascend/ascend_backend_optimization.cc
浏览文件 @
30000fdb
...
...
@@ -16,7 +16,6 @@
#include "backend/optimizer/ascend/ascend_backend_optimization.h"
#include <memory>
#include <string>
#include <set>
#include "backend/optimizer/common/optimizer.h"
#include "backend/optimizer/ascend/ir_fission/bn_split.h"
#include "backend/optimizer/ascend/ir_fission/bn_grad_split.h"
...
...
@@ -24,6 +23,7 @@
#include "backend/optimizer/ascend/ir_fission/batch_norm_bert_fission.h"
#include "backend/optimizer/ascend/ir_fission/single_batch_norm_fission.h"
#include "backend/optimizer/ascend/ir_fission/tensor_scatter_update_fission.h"
#include "backend/optimizer/ascend/ir_fission/reduce_min_fission.h"
#include "backend/optimizer/ascend/ir_fusion/fused_batch_norm_fusion.h"
#include "backend/optimizer/ascend/ir_fission/layer_norm_grad_split.h"
#include "backend/optimizer/pass/communication_op_fusion.h"
...
...
@@ -111,18 +111,9 @@
namespace
mindspore
{
namespace
opt
{
namespace
{
void
AddAscend
BackendOptionalIRFusion
(
PassManager
*
ir_fusion_pm
)
{
void
AddAscend
IRFusionRulesPass
(
PassManager
*
ir_fusion_pm
)
{
MS_EXCEPTION_IF_NULL
(
ir_fusion_pm
);
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormBertFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SingleBatchNormFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SquareSumFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ClipByNormNoDivSquareSumFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambUpdateWithLRRuleFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SoftmaxGradExtFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SoftmaxGradExtFusionV2
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SoftmaxGradExtFusionV3
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ConfusionMulGradFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ConfusionSoftmaxGradRule
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambNextMVWithDecayRuleCond1
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambNextMVWithDecayRuleCond2
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambNextMVWithDecayRuleCond3
>
());
...
...
@@ -133,10 +124,6 @@ void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambNextMVRuleCond4
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambNextRightRule
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
LambUpdateWithLrV2
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ReshapeTransposeFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TransposeReshapeFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ClipByValueFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TopKSplit
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AdamApplyOneCond1Fusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AdamApplyOneCond2Fusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AdamApplyOneCond3Fusion
>
());
...
...
@@ -146,6 +133,27 @@ void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AdamApplyOneWithDecayRuleCond3
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AdamApplyOneWithDecayRuleCond4
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AdamApplyOneWithDecayRuleCond5
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ClipByNormNoDivSquareSumFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SquareSumFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ClipByValueFusion
>
());
}
void
AddAscendIRFusionPass
(
PassManager
*
ir_fusion_pm
)
{
MS_EXCEPTION_IF_NULL
(
ir_fusion_pm
);
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormBertFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SingleBatchNormFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNorm2BNInfer
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormGrad2BNInferGrad
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormGradInferFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
GetitemTuple
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SoftmaxGradExtFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SoftmaxGradExtFusionV2
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SoftmaxGradExtFusionV3
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ConfusionMulGradFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ConfusionSoftmaxGradRule
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ReshapeTransposeFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TransposeReshapeFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TopKSplit
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
MomentumLossscaleFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
MulAddFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
MulAddNFusion
>
());
...
...
@@ -153,15 +161,12 @@ void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) {
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
AddnFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
DereluFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TransposeTransDataFusion
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
GetitemTuple
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNorm2BNInfer
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormGrad2BNInferGrad
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
BatchNormGradInferFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
SplitFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
TensorScatterUpdateFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
GetitemTuple
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
PackFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ConcatFission
>
());
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
ReduceMinFission
>
());
}
}
// namespace
...
...
@@ -265,9 +270,8 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
FusedBatchNormMixPrecisionFusion1
>
());
}
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
InsertPadForNMSWithMask
>
());
if
(
context_ptr
->
ir_fusion_flag
())
{
AddAscendBackendOptionalIRFusion
(
ir_fusion_pm
.
get
());
}
AddAscendIRFusionRulesPass
(
ir_fusion_pm
.
get
());
AddAscendIRFusionPass
(
ir_fusion_pm
.
get
());
if
(
context_ptr
->
enable_task_sink
()
&&
context_ptr
->
loop_sink_flag
()
&&
ConfigManager
::
GetInstance
().
iter_num
()
>
1
)
{
ir_fusion_pm
->
AddPass
(
std
::
make_shared
<
InsertMemcpyAsyncForGetNext
>
());
...
...
mindspore/ccsrc/backend/optimizer/ascend/ir_fission/reduce_min_fission.cc
0 → 100644
浏览文件 @
30000fdb
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/ascend/ir_fission/reduce_min_fission.h"
#include <memory>
#include <vector>
#include "backend/session/anf_runtime_algorithm.h"
namespace
mindspore
{
namespace
opt
{
namespace
{
CNodePtr
CreateReduceMin
(
const
FuncGraphPtr
&
graph
,
const
AnfNodePtr
&
input
,
const
CNodePtr
&
old_node
)
{
MS_EXCEPTION_IF_NULL
(
graph
);
MS_EXCEPTION_IF_NULL
(
input
);
MS_EXCEPTION_IF_NULL
(
old_node
);
std
::
vector
<
AnfNodePtr
>
inputs
=
{
NewValueNode
(
std
::
make_shared
<
Primitive
>
(
prim
::
kPrimReduceMin
->
name
())),
input
};
CNodePtr
reduce_min
=
graph
->
NewCNode
(
inputs
);
reduce_min
->
set_scope
(
old_node
->
scope
());
AnfAlgo
::
CopyNodeAttr
(
kAttrKeepDims
,
old_node
,
reduce_min
);
return
reduce_min
;
}
bool
NeedOptmize
(
const
TypeId
&
dtype
,
const
std
::
vector
<
size_t
>
&
shape
,
const
std
::
vector
<
int
>
&
axis
)
{
if
(
dtype
!=
kNumberTypeFloat32
)
{
MS_LOG
(
INFO
)
<<
"ReduceMin's input Dtype is not float32, no need optimize!"
;
return
false
;
}
if
(
shape
.
size
()
==
0
||
shape
.
size
()
==
1
)
{
MS_LOG
(
INFO
)
<<
"ReduceMin's input shape size is "
<<
shape
.
size
()
<<
", no need optimize!"
;
return
false
;
}
if
(
axis
.
size
()
==
1
)
{
MS_LOG
(
INFO
)
<<
"ReduceMin axis size is 1, no need optimize!"
;
return
false
;
}
int
last_dim
=
SizeToInt
(
shape
.
size
()
-
1
);
if
(
std
::
find
(
axis
.
begin
(),
axis
.
end
(),
-
1
)
==
axis
.
end
()
&&
std
::
find
(
axis
.
begin
(),
axis
.
end
(),
last_dim
)
==
axis
.
end
())
{
MS_LOG
(
INFO
)
<<
"Attribute of axis does not contain the last axis, not match!"
;
return
false
;
}
return
true
;
}
std
::
vector
<
int
>
CalFirstAxis
(
const
std
::
vector
<
size_t
>
&
shape
,
const
std
::
vector
<
int
>
&
axis
)
{
std
::
vector
<
int
>
axis_fisrt
;
int
last_dim
=
SizeToInt
(
shape
.
size
()
-
1
);
std
::
copy_if
(
axis
.
begin
(),
axis
.
end
(),
std
::
back_inserter
(
axis_fisrt
),
[
&
last_dim
](
int
v
)
{
return
v
!=
-
1
&&
v
!=
last_dim
;
});
int
dim_size
=
SizeToInt
(
shape
.
size
());
if
(
axis_fisrt
.
empty
())
{
for
(
int
i
=
0
;
i
<
dim_size
-
1
;
++
i
)
{
axis_fisrt
.
push_back
(
i
);
}
}
for
(
size_t
i
=
0
;
i
<
axis_fisrt
.
size
();
++
i
)
{
if
(
axis_fisrt
[
i
]
<
-
dim_size
||
axis_fisrt
[
i
]
>
dim_size
-
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"The axis of ReduceMin verify failed, quit optimizing"
;
}
if
(
axis_fisrt
[
i
]
<
0
)
{
axis_fisrt
[
i
]
=
dim_size
+
axis_fisrt
[
i
];
}
}
return
axis_fisrt
;
}
std
::
vector
<
size_t
>
GetInferShape
(
const
std
::
vector
<
size_t
>
&
shape
,
const
std
::
vector
<
int
>
&
axis_first
,
bool
keep_dims
)
{
std
::
vector
<
size_t
>
shape_first
;
for
(
size_t
item
=
0
;
item
<
shape
.
size
();
++
item
)
{
if
(
axis_first
.
end
()
!=
std
::
find
(
axis_first
.
begin
(),
axis_first
.
end
(),
item
))
{
if
(
keep_dims
)
{
// If keep_dims is true, curretn dimesion set to 1
shape_first
.
push_back
(
1
);
}
}
else
{
// item is not in ConstValueAxis
shape_first
.
push_back
(
shape
[
item
]);
}
}
return
shape_first
;
}
}
// namespace
const
BaseRef
ReduceMinFission
::
DefinePattern
()
const
{
VarPtr
X
=
std
::
make_shared
<
Var
>
();
return
VectorRef
({
prim
::
kPrimReduceMin
,
X
});
}
const
AnfNodePtr
ReduceMinFission
::
Process
(
const
FuncGraphPtr
&
graph
,
const
AnfNodePtr
&
node
,
const
EquivPtr
&
)
const
{
if
(
graph
==
nullptr
||
node
==
nullptr
)
{
return
nullptr
;
}
auto
cnode
=
node
->
cast
<
CNodePtr
>
();
MS_EXCEPTION_IF_NULL
(
cnode
);
CheckCNodeInputSize
(
cnode
,
2
);
auto
shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
cnode
,
0
);
auto
dtype
=
AnfAlgo
::
GetPrevNodeOutputInferDataType
(
cnode
,
0
);
if
(
!
AnfAlgo
::
HasNodeAttr
(
kAttrAxis
,
cnode
))
{
MS_LOG
(
INFO
)
<<
"ReduceMin has no axis, no need optimize!"
;
return
nullptr
;
}
auto
axis
=
AnfAlgo
::
GetNodeAttr
<
std
::
vector
<
int
>>
(
cnode
,
kAttrAxis
);
if
(
!
AnfAlgo
::
HasNodeAttr
(
kAttrKeepDims
,
cnode
))
{
MS_LOG
(
INFO
)
<<
"ReduceMin has no keep_dims, no need optimize!"
;
return
nullptr
;
}
auto
keep_dims
=
AnfAlgo
::
GetNodeAttr
<
bool
>
(
cnode
,
kAttrKeepDims
);
if
(
!
NeedOptmize
(
dtype
,
shape
,
axis
))
{
MS_LOG
(
INFO
)
<<
"No need optimize for this ReduceMin. "
<<
cnode
->
DebugString
();
return
nullptr
;
}
// Create reduce_min1
CNodePtr
reduce_min1
=
CreateReduceMin
(
graph
,
cnode
->
input
(
1
),
cnode
);
std
::
vector
<
int
>
axis_fisrt
=
CalFirstAxis
(
shape
,
axis
);
std
::
vector
<
size_t
>
shape_first
=
GetInferShape
(
shape
,
axis_fisrt
,
keep_dims
);
AnfAlgo
::
SetOutputInferTypeAndShape
({
dtype
},
{
shape_first
},
reduce_min1
.
get
());
AnfAlgo
::
SetNodeAttr
(
kAttrAxis
,
MakeValue
(
axis_fisrt
),
reduce_min1
);
// Create reduce_min2
CNodePtr
reduce_min2
=
CreateReduceMin
(
graph
,
reduce_min1
,
cnode
);
reduce_min2
->
set_abstract
(
cnode
->
abstract
());
std
::
vector
<
int
>
axis_last
=
{
-
1
};
AnfAlgo
::
SetNodeAttr
(
kAttrAxis
,
MakeValue
(
axis_last
),
reduce_min2
);
return
reduce_min2
;
}
}
// namespace opt
}
// namespace mindspore
mindspore/ccsrc/backend/optimizer/ascend/ir_fission/reduce_min_fission.h
0 → 100644
浏览文件 @
30000fdb
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_REDUCE_MIN_FISSION_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_REDUCE_MIN_FISSION_H_
#include "backend/optimizer/common/optimizer.h"
#include "backend/optimizer/common/helper.h"
namespace
mindspore
{
namespace
opt
{
class
ReduceMinFission
:
public
PatternProcessPass
{
public:
explicit
ReduceMinFission
(
bool
multigraph
=
true
)
:
PatternProcessPass
(
"reduce_min_fission"
,
multigraph
)
{}
~
ReduceMinFission
()
override
=
default
;
const
BaseRef
DefinePattern
()
const
override
;
const
AnfNodePtr
Process
(
const
FuncGraphPtr
&
,
const
AnfNodePtr
&
,
const
EquivPtr
&
)
const
override
;
};
}
// namespace opt
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_REDUCE_MIN_FISSION_H_
tests/ut/cpp/pre_activate/ascend/ir_fission/reduce_min_fission_test.cc
0 → 100644
浏览文件 @
30000fdb
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "debug/anf_ir_dump.h"
#define private public
#define protected public
#include "backend/optimizer/ascend/ir_fission/reduce_min_fission.h"
#undef private
#undef protected
namespace
mindspore
{
namespace
opt
{
class
TestHWOptReduceMinFission
:
public
BackendCommon
{
public:
TestHWOptReduceMinFission
()
:
get_py_fun_
(
"gtest_input.pre_activate.reduce_min_fission_test"
,
true
)
{}
~
TestHWOptReduceMinFission
()
override
=
default
;
UT
::
PyFuncGraphFetcher
get_py_fun_
;
};
TEST_F
(
TestHWOptReduceMinFission
,
test_fission
)
{
FuncGraphPtr
g
=
get_py_fun_
.
CallAndParseRet
(
"test_reduce_min_fission"
,
"before"
);
EXPECT_NE
(
g
,
nullptr
);
std
::
vector
<
int
>
shp
{
32
,
32
,
32
,
32
};
auto
x_abstract
=
std
::
make_shared
<
abstract
::
AbstractTensor
>
(
kFloat32
,
shp
);
AbstractBasePtrList
args_spec_list
;
args_spec_list
.
push_back
(
x_abstract
);
auto
kg
=
GetKernelGraph
(
g
,
args_spec_list
);
auto
optimizer
=
std
::
make_shared
<
opt
::
GraphOptimizer
>
();
auto
pm
=
std
::
make_shared
<
opt
::
PassManager
>
();
auto
split_fission
=
std
::
make_shared
<
opt
::
ReduceMinFission
>
();
pm
->
AddPass
(
split_fission
);
optimizer
->
AddPassManager
(
pm
);
FuncGraphPtr
new_graph
=
optimizer
->
Optimize
(
kg
);
FuncGraphPtr
g_after
=
get_py_fun_
.
CallAndParseRet
(
"test_reduce_min_fission"
,
"after"
);
EXPECT_TRUE
(
CheckEqualGraph
(
g_after
,
new_graph
));
}
}
// namespace opt
}
// namespace mindspore
tests/ut/cpp/python_input/gtest_input/pre_activate/reduce_min_fission_test.py
0 → 100644
浏览文件 @
30000fdb
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from
mindspore.ops
import
Primitive
from
mindspore.ops
import
operations
as
P
make_tuple
=
Primitive
(
'make_tuple'
)
tuple_getitem
=
Primitive
(
'tuple_getitem'
)
reduce_min
=
P
.
ReduceMin
(
keep_dims
=
False
)
reduce_min1
=
Primitive
(
'ReduceMin'
)
reduce_min2
=
Primitive
(
'ReduceMin'
)
class
FnDict
:
def
__init__
(
self
):
self
.
fnDict
=
{}
def
__call__
(
self
,
fn
):
self
.
fnDict
[
fn
.
__name__
]
=
fn
def
__getitem__
(
self
,
name
):
return
self
.
fnDict
[
name
]
def
test_reduce_min_fission
(
tag
):
fns
=
FnDict
()
@
fns
def
before
(
x
):
res
=
reduce_min
(
x
,
(
2
,
3
))
return
res
@
fns
def
after
(
x
):
res
=
reduce_min1
(
x
)
res
=
reduce_min2
(
res
)
return
make_tuple
(
res
)
return
fns
[
tag
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录