提交 2e68873a 编写于 作者: T tao_yunhao

add arm cpu fp32 op: exp

上级 d0c7b1ba
......@@ -34,14 +34,6 @@ int ElementCos(float *input, float *output, int element_size) {
return NNACL_OK;
}
// exp:
int ElementExp(float *input, float *output, int element_size) {
for (int i = 0; i < element_size; i++) {
output[i] = expf(input[i]);
}
return NNACL_OK;
}
// log:
int ElementLog(float *input, float *output, int element_size) {
for (int i = 0; i < element_size; i++) {
......
......@@ -30,8 +30,6 @@ int ElementAbs(float *input, float *output, int element_size);
int ElementCos(float *input, float *output, int element_size);
int ElementExp(float *input, float *output, int element_size);
int ElementLog(float *input, float *output, int element_size);
int ElementSquare(float *input, float *output, int element_size);
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp32/exp.h"
#include <math.h>
#include "nnacl/errorcode.h"
int Exp(float *input_data, float *output_data, ExpParameter *parameter, int task_id) {
if (parameter->scale_ == 1) {
for (size_t i = task_id; i < parameter->element_num_; i += parameter->thread_num_) {
output_data[i] = expf(input_data[i]);
}
} else {
for (size_t i = task_id; i < parameter->element_num_; i += parameter->thread_num_) {
output_data[i] = expf(input_data[i] * parameter->in_scale_);
}
}
if (parameter->out_scale_ != 1) {
for (size_t i = task_id; i < parameter->element_num_; i += parameter->thread_num_) {
output_data[i] = output_data[i] * parameter->out_scale_;
}
}
return NNACL_OK;
}
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP32_EXP_H_
#define MINDSPORE_LITE_NNACL_FP32_EXP_H_
#include "nnacl/op_base.h"
typedef struct ExpParameter {
OpParameter op_parameter_;
int thread_num_;
float base_;
float scale_;
float shift_;
float in_scale_;
float out_scale_;
int element_num_;
} ExpParameter;
#ifdef __cplusplus
extern "C" {
#endif
int Exp(float *input_data, float *output_data, ExpParameter *parameter, int task_id);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP32_EXP_H_
......@@ -473,9 +473,9 @@ table Neg {
}
table Exp {
base : float;
scale : float;
shift : float;
base : float = -1.0;
scale : float = 1.0;
shift : float = 0.0;
}
table Cos {
......
......@@ -18,16 +18,35 @@
namespace mindspore {
namespace lite {
#ifndef PRIMITIVE_WRITEABLE
#ifdef PRIMITIVE_WRITEABLE
void Exp::SetBase(float base) { this->primitive_->value.AsExp()->base = base; }
void Exp::SetScale(float scale) { this->primitive_->value.AsExp()->scale = scale; }
void Exp::SetShift(float shift) { this->primitive_->value.AsExp()->shift = shift; }
float Exp::GetBase() const { return this->primitive_->value.AsExp()->base; }
float Exp::GetScale() const { return this->primitive_->value.AsExp()->scale; }
float Exp::GetShift() const { return this->primitive_->value.AsExp()->shift; }
#else
int Exp::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
MS_ASSERT(nullptr != primitive);
MS_ASSERT(nullptr != fbb);
auto val_offset = schema::CreateExp(*fbb);
auto attr = primitive->value_as_Exp();
if (attr == nullptr) {
MS_LOG(ERROR) << "value_as_Exp return nullptr";
return RET_ERROR;
}
auto val_offset = schema::CreateExp(*fbb, attr->base(), attr->scale(), attr->shift());
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_Exp, val_offset.o);
fbb->Finish(prim_offset);
return RET_OK;
}
float Exp::GetBase() const { return this->primitive_->value_as_Exp()->base(); }
float Exp::GetScale() const { return this->primitive_->value_as_Exp()->scale(); }
float Exp::GetShift() const { return this->primitive_->value_as_Exp()->shift(); }
#endif
} // namespace lite
} // namespace mindspore
......@@ -21,21 +21,27 @@
#include <set>
#include <cmath>
#include "ir/dtype/type_id.h"
#include "src/ops/arithmetic_self.h"
#include "src/ops/primitive_c.h"
namespace mindspore {
namespace lite {
class Exp : public ArithmeticSelf {
class Exp : public PrimitiveC {
public:
#ifdef PRIMITIVE_WRITEABLE
MS_DECLARE_PARENT(Exp, ArithmeticSelf);
MS_DECLARE_PARENT(Exp, PrimitiveC);
Exp() = default;
explicit Exp(schema::PrimitiveT *primitive) : ArithmeticSelf(primitive) {}
explicit Exp(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
void SetBase(float base);
void SetShift(float shift);
void SetScale(float scale);
#else
Exp() = default;
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
#endif
float GetBase() const;
float GetShift() const;
float GetScale() const;
};
} // namespace lite
} // namespace mindspore
......
......@@ -23,7 +23,7 @@ namespace lite {
int FloorDiv::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
MS_ASSERT(nullptr != primitive);
MS_ASSERT(nullptr != fbb);
auto val_offset = schema::CreateFloor(*fbb);
auto val_offset = schema::CreateFloorDiv(*fbb);
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_FloorDiv, val_offset.o);
fbb->Finish(prim_offset);
return RET_OK;
......
......@@ -173,6 +173,7 @@
#include "nnacl/sparse_to_dense.h"
#include "nnacl/l2_norm_parameter.h"
#include "nnacl/detection_post_process_parameter.h"
#include "nnacl/fp32/exp.h"
namespace mindspore::kernel {
......@@ -1517,8 +1518,7 @@ OpParameter *PopulateEluParameter(const mindspore::lite::PrimitiveC *primitive)
return reinterpret_cast<OpParameter *>(elu_parameter);
}
OpParameter *PopulateL2NormParameter(
const mindspore::lite::PrimitiveC *primitive) {
OpParameter *PopulateL2NormParameter(const mindspore::lite::PrimitiveC *primitive) {
L2NormParameter *l2_norm_parameter = reinterpret_cast<L2NormParameter *>(malloc(sizeof(L2NormParameter)));
if (l2_norm_parameter == nullptr) {
MS_LOG(ERROR) << "malloc L2NormParameter failed.";
......@@ -1566,6 +1566,26 @@ OpParameter *PopulateDetectionPostProcessParameter(const mindspore::lite::Primit
return reinterpret_cast<OpParameter *>(detection_post_process_parameter);
}
OpParameter *PopulateExpParameter(const mindspore::lite::PrimitiveC *primitive) {
ExpParameter *exp_parameter = reinterpret_cast<ExpParameter *>(malloc(sizeof(ExpParameter)));
if (exp_parameter == nullptr) {
MS_LOG(ERROR) << "malloc ExpParameter failed.";
return nullptr;
}
memset(exp_parameter, 0, sizeof(ExpParameter));
exp_parameter->op_parameter_.type_ = primitive->Type();
auto param = reinterpret_cast<mindspore::lite::Exp *>(const_cast<mindspore::lite::PrimitiveC *>(primitive));
exp_parameter->base_ = param->GetBase();
exp_parameter->scale_ = param->GetScale();
exp_parameter->shift_ = param->GetShift();
if (exp_parameter->base_ != -1 && exp_parameter->base_ <= 0) {
MS_LOG(ERROR) << "Exp base must be strictly positive, got " << exp_parameter->base_;
free(exp_parameter);
return nullptr;
}
return reinterpret_cast<OpParameter *>(exp_parameter);
}
PopulateParameterRegistry::PopulateParameterRegistry() {
populate_parameter_funcs_[schema::PrimitiveType_SparseToDense] = PopulateSparseToDenseParameter;
populate_parameter_funcs_[schema::PrimitiveType_SoftMax] = PopulateSoftmaxParameter;
......@@ -1608,7 +1628,7 @@ PopulateParameterRegistry::PopulateParameterRegistry() {
populate_parameter_funcs_[schema::PrimitiveType_Abs] = PopulateArithmeticSelf;
populate_parameter_funcs_[schema::PrimitiveType_Cos] = PopulateArithmeticSelf;
populate_parameter_funcs_[schema::PrimitiveType_Sin] = PopulateArithmeticSelf;
populate_parameter_funcs_[schema::PrimitiveType_Exp] = PopulateArithmeticSelf;
populate_parameter_funcs_[schema::PrimitiveType_Exp] = PopulateExpParameter;
populate_parameter_funcs_[schema::PrimitiveType_Log] = PopulateArithmeticSelf;
populate_parameter_funcs_[schema::PrimitiveType_Square] = PopulateArithmeticSelf;
populate_parameter_funcs_[schema::PrimitiveType_Sqrt] = PopulateArithmeticSelf;
......
......@@ -169,7 +169,6 @@ kernel::LiteKernel *CpuArithmeticSelfFp32KernelCreator(const std::vector<lite::t
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Abs, CpuArithmeticSelfFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Cos, CpuArithmeticSelfFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Exp, CpuArithmeticSelfFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Log, CpuArithmeticSelfFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Square, CpuArithmeticSelfFp32KernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Sqrt, CpuArithmeticSelfFp32KernelCreator)
......
......@@ -28,7 +28,6 @@ using mindspore::lite::Context;
using mindspore::schema::PrimitiveType_Abs;
using mindspore::schema::PrimitiveType_Ceil;
using mindspore::schema::PrimitiveType_Cos;
using mindspore::schema::PrimitiveType_Exp;
using mindspore::schema::PrimitiveType_Floor;
using mindspore::schema::PrimitiveType_Log;
using mindspore::schema::PrimitiveType_LogicalNot;
......@@ -55,9 +54,6 @@ class ArithmeticSelfCPUKernel : public LiteKernel {
case PrimitiveType_Cos:
arithmeticSelf_run_ = ElementCos;
break;
case PrimitiveType_Exp:
arithmeticSelf_run_ = ElementExp;
break;
case PrimitiveType_Log:
arithmeticSelf_run_ = ElementLog;
break;
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/exp.h"
#include <math.h>
#include "include/errorcode.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Exp;
namespace mindspore::kernel {
int ExpCPUKernel::Init() {
exp_parameter_ = reinterpret_cast<ExpParameter *>(op_parameter_);
exp_parameter_->thread_num_ = thread_count_;
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ExpCPUKernel::ReSize() {
exp_parameter_->thread_num_ = thread_count_;
float log_ = (exp_parameter_->base_ == -1) ? 1 : logf(exp_parameter_->base_);
exp_parameter_->in_scale_ = exp_parameter_->scale_ * log_;
if (exp_parameter_->shift_ == 0) {
exp_parameter_->out_scale_ = 1;
} else {
if (log_ == 1) {
exp_parameter_->out_scale_ = expf(exp_parameter_->shift_);
} else {
exp_parameter_->out_scale_ = powf(exp_parameter_->base_, exp_parameter_->shift_);
}
}
return RET_OK;
}
int ExpCPUKernel::DoExcute(int task_id) {
Exp(input_addr_, output_addr_, exp_parameter_, task_id);
return RET_OK;
}
int ExpRun(void *cdata, int task_id) {
auto ExpData = reinterpret_cast<ExpCPUKernel *>(cdata);
auto ret = ExpData->DoExcute(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ExpRun error task_id[" << task_id << "] error_code[" << ret << "]";
return RET_ERROR;
}
return RET_OK;
}
int ExpCPUKernel::Run() {
auto prepare_ret = Prepare();
if (prepare_ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
input_addr_ = reinterpret_cast<float *>(in_tensors_.front()->Data());
output_addr_ = reinterpret_cast<float *>(out_tensors_.front()->Data());
exp_parameter_->element_num_ = in_tensors_.front()->ElementsNum();
auto ret = ParallelLaunch(THREAD_POOL_DEFAULT, ExpRun, this, exp_parameter_->thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Exp error: error_code[" << ret << "]";
return RET_ERROR;
}
return RET_OK;
}
kernel::LiteKernel *CpuExpFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, OpParameter *parameter,
const lite::Context *ctx, const KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (parameter == nullptr || ctx == nullptr) {
MS_LOG(ERROR) << "parameter or ctx is nullptr";
return nullptr;
}
MS_ASSERT(desc.type == PrimitiveType_Exp);
auto *kernel = new (std::nothrow) ExpCPUKernel(parameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Create Kernel failed, name: " << parameter->name_;
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init Kernel failed, name: " << parameter->name_
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Exp, CpuExpFp32KernelCreator)
} // namespace mindspore::kernel
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_EXP_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_EXP_H_
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/fp32/exp.h"
namespace mindspore::kernel {
class ExpCPUKernel : public LiteKernel {
public:
explicit ExpCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), ctx_(ctx), thread_count_(ctx->thread_num_) {}
~ExpCPUKernel() override{};
int Init() override;
int ReSize() override;
int Run() override;
int DoExcute(int task_id);
protected:
const lite::Context *ctx_;
int thread_count_;
ExpParameter *exp_parameter_;
private:
float *input_addr_;
float *output_addr_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_EXP_H_
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册