Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
2e45aa6c
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2e45aa6c
编写于
7月 11, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 11, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3014 Add ps optimizer info
Merge pull request !3014 from ZPaC/add-ps-optim-info
上级
b81e8608
272e397b
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
303 addition
and
1 deletion
+303
-1
mindspore/ccsrc/parallel/CMakeLists.txt
mindspore/ccsrc/parallel/CMakeLists.txt
+1
-1
mindspore/ccsrc/parallel/ps/optimizer_info.cc
mindspore/ccsrc/parallel/ps/optimizer_info.cc
+184
-0
mindspore/ccsrc/parallel/ps/optimizer_info.h
mindspore/ccsrc/parallel/ps/optimizer_info.h
+117
-0
tests/ut/cpp/CMakeLists.txt
tests/ut/cpp/CMakeLists.txt
+1
-0
未找到文件。
mindspore/ccsrc/parallel/CMakeLists.txt
浏览文件 @
2e45aa6c
file
(
GLOB_RECURSE _PARALLEL_SRC_FILES RELATIVE
${
CMAKE_CURRENT_SOURCE_DIR
}
"*.cc"
)
file
(
GLOB_RECURSE _PARALLEL_SRC_FILES RELATIVE
${
CMAKE_CURRENT_SOURCE_DIR
}
"*.cc"
)
list
(
REMOVE_ITEM _PARALLEL_SRC_FILES
"ps/util.cc"
"ps/scheduler.cc"
)
list
(
REMOVE_ITEM _PARALLEL_SRC_FILES
"ps/util.cc"
"ps/scheduler.cc"
"ps/optimizer_info.cc"
)
if
(
ENABLE_DUMP_PROTO
)
if
(
ENABLE_DUMP_PROTO
)
list
(
REMOVE_ITEM _PARALLEL_SRC_FILES
"parallel/strategy_checkpoint/parallel_strategy_checkpoint.cc"
)
list
(
REMOVE_ITEM _PARALLEL_SRC_FILES
"parallel/strategy_checkpoint/parallel_strategy_checkpoint.cc"
)
endif
()
endif
()
...
...
mindspore/ccsrc/parallel/ps/optimizer_info.cc
0 → 100644
浏览文件 @
2e45aa6c
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "parallel/ps/optimizer_info.h"
#include <memory>
namespace
mindspore
{
namespace
parallel
{
namespace
ps
{
void
OptimizerInfo
::
AddWorkspace
(
const
AddressPtr
&
workspace
)
{
workspaces_
.
push_back
(
workspace
);
}
const
std
::
vector
<
AddressPtr
>
&
OptimizerInfo
::
inputs
()
{
return
inputs_
;
}
const
std
::
vector
<
AddressPtr
>
&
OptimizerInfo
::
workspaces
()
{
return
workspaces_
;
}
const
std
::
vector
<
AddressPtr
>
&
OptimizerInfo
::
outputs
()
{
return
outputs_
;
}
bool
OptimizerInfo
::
IsSparse
()
const
{
return
false
;
}
size_t
OptimizerInfo
::
grad_index
()
{
return
0
;
}
size_t
OptimizerInfo
::
indices_index
()
{
return
0
;
}
void
OptimizerInfo
::
UpdateWeight
(
const
WeightPtr
&
weight
)
{
AddressPtr
weight_addr
=
std
::
make_shared
<
kernel
::
Address
>
();
weight_addr
->
addr
=
weight
->
data
();
weight_addr
->
size
=
weight
->
size
();
inputs_
[
0
]
=
weight_addr
;
}
void
DenseOptimInfo
::
Accumulate
(
const
Values
&
values
,
const
Lengths
&
lengths
)
{
float
*
accum_grad_data
=
reinterpret_cast
<
float
*>
(
gradient
()
->
addr
);
size_t
size
=
gradient
()
->
size
/
sizeof
(
float
);
size_t
grad_index
=
this
->
grad_index
();
size_t
grad_offset
=
0
;
for
(
size_t
i
=
0
;
i
<
grad_index
;
i
++
)
{
grad_offset
+=
lengths
[
i
];
}
float
*
grad_data
=
values
.
data
()
+
grad_offset
;
CHECK_EQ
(
size
,
static_cast
<
size_t
>
(
lengths
[
grad_index
]));
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
accum_grad_data
[
i
]
+=
grad_data
[
i
];
}
}
void
SparseOptimInfo
::
Accumulate
(
const
Values
&
values
,
const
Lengths
&
lengths
)
{
// Append grad data to the end
float
*
accum_grad_data
=
reinterpret_cast
<
float
*>
(
gradient
()
->
addr
);
size_t
grad_index
=
this
->
grad_index
();
size_t
grad_offset
=
0
;
for
(
size_t
i
=
0
;
i
<
grad_index
;
i
++
)
{
grad_offset
+=
lengths
[
i
];
}
float
*
incr_grad_data
=
values
.
data
()
+
grad_offset
;
size_t
incr_grad_size
=
lengths
[
grad_index
]
*
sizeof
(
float
);
auto
ret
=
memcpy_s
(
accum_grad_data
+
grads_offset_
,
incr_grad_size
,
incr_grad_data
,
incr_grad_size
);
if
(
ret
!=
0
)
{
MS_LOG
(
EXCEPTION
)
<<
"memcpy_s error, errorno("
<<
ret
<<
")"
;
}
grads_offset_
+=
incr_grad_size
;
gradient
()
->
size
+=
incr_grad_size
;
// Append indice data to the end
int
*
accum_indices_data
=
reinterpret_cast
<
int
*>
(
indices
()
->
addr
);
size_t
indices_index
=
this
->
indices_index
();
size_t
indice_offset
=
0
;
for
(
size_t
i
=
0
;
i
<
indices_index
;
i
++
)
{
indice_offset
+=
lengths
[
i
];
}
int
*
incr_indice_data
=
reinterpret_cast
<
int
*>
(
values
.
data
()
+
indice_offset
);
size_t
incr_indice_size
=
lengths
[
indices_index
]
*
sizeof
(
float
);
auto
ret2
=
memcpy_s
(
accum_indices_data
+
indices_offset_
,
incr_indice_size
,
incr_indice_data
,
incr_indice_size
);
if
(
ret2
!=
0
)
{
MS_LOG
(
EXCEPTION
)
<<
"memcpy_s error, errorno("
<<
ret2
<<
")"
;
}
indices_offset_
+=
incr_indice_size
;
indices
()
->
size
+=
incr_indice_size
;
}
void
SparseOptimInfo
::
Reset
()
{
auto
&
gradient
=
this
->
gradient
();
gradient
->
size
=
0
;
auto
&
indices
=
this
->
indices
();
indices
->
size
=
0
;
grads_offset_
=
0
;
indices_offset_
=
0
;
}
MomentumOptimInfo
::
MomentumOptimInfo
(
const
AddressPtr
&
weight
,
const
AddressPtr
&
accumulate
,
const
AddressPtr
&
learning_rate
,
const
AddressPtr
&
gradient
,
const
AddressPtr
&
momentum
)
{
inputs_
.
push_back
(
weight
);
inputs_
.
push_back
(
accumulate
);
inputs_
.
push_back
(
learning_rate
);
inputs_
.
push_back
(
gradient
);
inputs_
.
push_back
(
momentum
);
}
const
AddressPtr
&
MomentumOptimInfo
::
gradient
()
{
return
inputs_
[
3
];
}
const
AddressPtr
&
MomentumOptimInfo
::
indices
()
{
return
inputs_
[
3
];
}
SparseAdamOptimInfo
::
SparseAdamOptimInfo
(
const
AddressPtr
&
weight
,
const
AddressPtr
&
m
,
const
AddressPtr
&
v
,
const
AddressPtr
&
beta1_power
,
const
AddressPtr
&
beta2_power
,
const
AddressPtr
&
learning_rate
,
const
AddressPtr
&
beta1
,
const
AddressPtr
&
beta2
,
const
AddressPtr
&
epsilon
,
const
AddressPtr
&
grad
,
const
AddressPtr
&
indices
,
size_t
grads_offset
,
size_t
indices_offset
)
{
inputs_
.
push_back
(
weight
);
inputs_
.
push_back
(
m
);
inputs_
.
push_back
(
v
);
inputs_
.
push_back
(
beta1_power
);
inputs_
.
push_back
(
beta2_power
);
inputs_
.
push_back
(
learning_rate
);
inputs_
.
push_back
(
beta1
);
inputs_
.
push_back
(
beta2
);
inputs_
.
push_back
(
epsilon
);
inputs_
.
push_back
(
grad
);
inputs_
.
push_back
(
indices
);
grads_offset_
=
grads_offset
;
indices_offset_
=
indices_offset
;
}
void
SparseAdamOptimInfo
::
Update
(
const
Values
&
values
,
const
Lengths
&
lens
)
{
void
*
data_ptr
=
values
.
data
();
AddressPtr
beta1_power
=
inputs_
[
3
];
size_t
size
=
values
.
size
()
*
sizeof
(
float
);
auto
ret
=
memcpy_s
(
beta1_power
->
addr
,
size
,
data_ptr
,
size
);
if
(
ret
!=
0
)
{
MS_LOG
(
EXCEPTION
)
<<
"memcpy_s error, errorno("
<<
ret
<<
")"
;
}
}
const
AddressPtr
&
SparseAdamOptimInfo
::
gradient
()
{
return
inputs_
[
9
];
}
const
AddressPtr
&
SparseAdamOptimInfo
::
indices
()
{
return
inputs_
[
10
];
}
bool
SparseAdamOptimInfo
::
IsSparse
()
const
{
return
true
;
}
size_t
SparseAdamOptimInfo
::
grad_index
()
{
return
6
;
}
size_t
SparseAdamOptimInfo
::
indices_index
()
{
return
7
;
}
SparseFtrlOptimInfo
::
SparseFtrlOptimInfo
(
const
AddressPtr
&
weight
,
const
AddressPtr
&
accum
,
const
AddressPtr
&
linear
,
const
AddressPtr
&
grad
,
const
AddressPtr
&
indices
,
size_t
grads_offset
,
size_t
indices_offset
)
{
inputs_
.
push_back
(
weight
);
inputs_
.
push_back
(
accum
);
inputs_
.
push_back
(
linear
);
inputs_
.
push_back
(
grad
);
inputs_
.
push_back
(
indices
);
grads_offset_
=
grads_offset
;
indices_offset_
=
indices_offset
;
}
const
AddressPtr
&
SparseFtrlOptimInfo
::
gradient
()
{
return
inputs_
[
3
];
}
const
AddressPtr
&
SparseFtrlOptimInfo
::
indices
()
{
return
inputs_
[
4
];
}
bool
SparseFtrlOptimInfo
::
IsSparse
()
const
{
return
true
;
}
size_t
SparseFtrlOptimInfo
::
grad_index
()
{
return
0
;
}
size_t
SparseFtrlOptimInfo
::
indices_index
()
{
return
1
;
}
}
// namespace ps
}
// namespace parallel
}
// namespace mindspore
mindspore/ccsrc/parallel/ps/optimizer_info.h
0 → 100644
浏览文件 @
2e45aa6c
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_MINDSPORE_CCSRC_PARALLEL_PS_OPTIMIZER_INFO_H_
#define MINDSPORE_MINDSPORE_CCSRC_PARALLEL_PS_OPTIMIZER_INFO_H_
#include <vector>
#include "kernel/kernel.h"
#include "parallel/ps/common.h"
namespace
mindspore
{
namespace
parallel
{
namespace
ps
{
using
mindspore
::
kernel
::
AddressPtr
;
class
OptimizerInfo
{
public:
OptimizerInfo
()
=
default
;
virtual
~
OptimizerInfo
()
=
default
;
virtual
void
Update
(
const
Values
&
values
,
const
Lengths
&
lengths
)
{}
virtual
void
UpdateWeight
(
const
WeightPtr
&
weight
);
virtual
void
Accumulate
(
const
Values
&
values
,
const
Lengths
&
lengths
)
=
0
;
virtual
void
Reset
()
{}
void
AddWorkspace
(
const
AddressPtr
&
workspace
);
virtual
const
AddressPtr
&
gradient
()
=
0
;
virtual
const
AddressPtr
&
indices
()
=
0
;
const
std
::
vector
<
AddressPtr
>
&
inputs
();
const
std
::
vector
<
AddressPtr
>
&
workspaces
();
const
std
::
vector
<
AddressPtr
>
&
outputs
();
virtual
bool
IsSparse
()
const
;
virtual
size_t
grad_index
();
virtual
size_t
indices_index
();
protected:
std
::
vector
<
AddressPtr
>
inputs_
;
std
::
vector
<
AddressPtr
>
workspaces_
;
std
::
vector
<
AddressPtr
>
outputs_
;
};
class
DenseOptimInfo
:
public
OptimizerInfo
{
public:
DenseOptimInfo
()
=
default
;
~
DenseOptimInfo
()
override
=
default
;
void
Accumulate
(
const
Values
&
values
,
const
Lengths
&
lens
)
override
;
};
class
SparseOptimInfo
:
public
OptimizerInfo
{
public:
SparseOptimInfo
()
=
default
;
~
SparseOptimInfo
()
override
=
default
;
void
Accumulate
(
const
Values
&
values
,
const
Lengths
&
lens
)
override
;
void
Reset
()
override
;
protected:
size_t
grads_offset_
{
0
};
size_t
indices_offset_
{
0
};
};
class
MomentumOptimInfo
:
public
DenseOptimInfo
{
public:
MomentumOptimInfo
(
const
AddressPtr
&
weight
,
const
AddressPtr
&
accumulate
,
const
AddressPtr
&
learning_rate
,
const
AddressPtr
&
gradient
,
const
AddressPtr
&
momentum
);
~
MomentumOptimInfo
()
override
=
default
;
const
AddressPtr
&
gradient
();
const
AddressPtr
&
indices
();
};
class
SparseAdamOptimInfo
:
public
SparseOptimInfo
{
public:
SparseAdamOptimInfo
(
const
AddressPtr
&
weight
,
const
AddressPtr
&
m
,
const
AddressPtr
&
v
,
const
AddressPtr
&
beta1_power
,
const
AddressPtr
&
beta2_power
,
const
AddressPtr
&
learning_rate
,
const
AddressPtr
&
beta1
,
const
AddressPtr
&
beta2
,
const
AddressPtr
&
epsilon
,
const
AddressPtr
&
grad
,
const
AddressPtr
&
indices
,
size_t
grads_offset
,
size_t
indices_offset
);
~
SparseAdamOptimInfo
()
override
=
default
;
void
Update
(
const
Values
&
values
,
const
Lengths
&
lens
)
override
;
const
AddressPtr
&
gradient
();
const
AddressPtr
&
indices
();
bool
IsSparse
()
const
override
;
size_t
grad_index
()
override
;
size_t
indices_index
()
override
;
};
class
SparseFtrlOptimInfo
:
public
SparseOptimInfo
{
public:
SparseFtrlOptimInfo
(
const
AddressPtr
&
weight
,
const
AddressPtr
&
accum
,
const
AddressPtr
&
linear
,
const
AddressPtr
&
grad
,
const
AddressPtr
&
indices
,
size_t
grads_offset
,
size_t
indices_offset
);
~
SparseFtrlOptimInfo
()
override
=
default
;
const
AddressPtr
&
gradient
();
const
AddressPtr
&
indices
();
bool
IsSparse
()
const
override
;
size_t
grad_index
()
override
;
size_t
indices_index
()
override
;
};
}
// namespace ps
}
// namespace parallel
}
// namespace mindspore
#endif // MINDSPORE_MINDSPORE_CCSRC_PARALLEL_PS_OPTIMIZER_INFO_H_
tests/ut/cpp/CMakeLists.txt
浏览文件 @
2e45aa6c
...
@@ -117,6 +117,7 @@ list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/ir/lite/tensor.cc"
...
@@ -117,6 +117,7 @@ list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/ir/lite/tensor.cc"
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/strategy_checkpoint/parallel_strategy_checkpoint.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/strategy_checkpoint/parallel_strategy_checkpoint.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/ps/util.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/ps/util.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/ps/scheduler.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/ps/scheduler.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/parallel/ps/optimizer_info.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/utils/anf_ir.pb.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/utils/anf_ir.pb.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/utils/node_strategy.pb.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/utils/node_strategy.pb.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/utils/load_onnx/anf_model_parser.cc"
)
list
(
REMOVE_ITEM MINDSPORE_SRC_LIST
"../../../mindspore/ccsrc/utils/load_onnx/anf_model_parser.cc"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录