提交 2e45aa6c 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!3014 Add ps optimizer info

Merge pull request !3014 from ZPaC/add-ps-optim-info
file(GLOB_RECURSE _PARALLEL_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
list(REMOVE_ITEM _PARALLEL_SRC_FILES "ps/util.cc" "ps/scheduler.cc")
list(REMOVE_ITEM _PARALLEL_SRC_FILES "ps/util.cc" "ps/scheduler.cc" "ps/optimizer_info.cc")
if (ENABLE_DUMP_PROTO)
list(REMOVE_ITEM _PARALLEL_SRC_FILES "parallel/strategy_checkpoint/parallel_strategy_checkpoint.cc")
endif ()
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "parallel/ps/optimizer_info.h"
#include <memory>
namespace mindspore {
namespace parallel {
namespace ps {
void OptimizerInfo::AddWorkspace(const AddressPtr &workspace) { workspaces_.push_back(workspace); }
const std::vector<AddressPtr> &OptimizerInfo::inputs() { return inputs_; }
const std::vector<AddressPtr> &OptimizerInfo::workspaces() { return workspaces_; }
const std::vector<AddressPtr> &OptimizerInfo::outputs() { return outputs_; }
bool OptimizerInfo::IsSparse() const { return false; }
size_t OptimizerInfo::grad_index() { return 0; }
size_t OptimizerInfo::indices_index() { return 0; }
void OptimizerInfo::UpdateWeight(const WeightPtr &weight) {
AddressPtr weight_addr = std::make_shared<kernel::Address>();
weight_addr->addr = weight->data();
weight_addr->size = weight->size();
inputs_[0] = weight_addr;
}
void DenseOptimInfo::Accumulate(const Values &values, const Lengths &lengths) {
float *accum_grad_data = reinterpret_cast<float *>(gradient()->addr);
size_t size = gradient()->size / sizeof(float);
size_t grad_index = this->grad_index();
size_t grad_offset = 0;
for (size_t i = 0; i < grad_index; i++) {
grad_offset += lengths[i];
}
float *grad_data = values.data() + grad_offset;
CHECK_EQ(size, static_cast<size_t>(lengths[grad_index]));
for (size_t i = 0; i < size; i++) {
accum_grad_data[i] += grad_data[i];
}
}
void SparseOptimInfo::Accumulate(const Values &values, const Lengths &lengths) {
// Append grad data to the end
float *accum_grad_data = reinterpret_cast<float *>(gradient()->addr);
size_t grad_index = this->grad_index();
size_t grad_offset = 0;
for (size_t i = 0; i < grad_index; i++) {
grad_offset += lengths[i];
}
float *incr_grad_data = values.data() + grad_offset;
size_t incr_grad_size = lengths[grad_index] * sizeof(float);
auto ret = memcpy_s(accum_grad_data + grads_offset_, incr_grad_size, incr_grad_data, incr_grad_size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
grads_offset_ += incr_grad_size;
gradient()->size += incr_grad_size;
// Append indice data to the end
int *accum_indices_data = reinterpret_cast<int *>(indices()->addr);
size_t indices_index = this->indices_index();
size_t indice_offset = 0;
for (size_t i = 0; i < indices_index; i++) {
indice_offset += lengths[i];
}
int *incr_indice_data = reinterpret_cast<int *>(values.data() + indice_offset);
size_t incr_indice_size = lengths[indices_index] * sizeof(float);
auto ret2 = memcpy_s(accum_indices_data + indices_offset_, incr_indice_size, incr_indice_data, incr_indice_size);
if (ret2 != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret2 << ")";
}
indices_offset_ += incr_indice_size;
indices()->size += incr_indice_size;
}
void SparseOptimInfo::Reset() {
auto &gradient = this->gradient();
gradient->size = 0;
auto &indices = this->indices();
indices->size = 0;
grads_offset_ = 0;
indices_offset_ = 0;
}
MomentumOptimInfo::MomentumOptimInfo(const AddressPtr &weight, const AddressPtr &accumulate,
const AddressPtr &learning_rate, const AddressPtr &gradient,
const AddressPtr &momentum) {
inputs_.push_back(weight);
inputs_.push_back(accumulate);
inputs_.push_back(learning_rate);
inputs_.push_back(gradient);
inputs_.push_back(momentum);
}
const AddressPtr &MomentumOptimInfo::gradient() { return inputs_[3]; }
const AddressPtr &MomentumOptimInfo::indices() { return inputs_[3]; }
SparseAdamOptimInfo::SparseAdamOptimInfo(const AddressPtr &weight, const AddressPtr &m, const AddressPtr &v,
const AddressPtr &beta1_power, const AddressPtr &beta2_power,
const AddressPtr &learning_rate, const AddressPtr &beta1,
const AddressPtr &beta2, const AddressPtr &epsilon, const AddressPtr &grad,
const AddressPtr &indices, size_t grads_offset, size_t indices_offset) {
inputs_.push_back(weight);
inputs_.push_back(m);
inputs_.push_back(v);
inputs_.push_back(beta1_power);
inputs_.push_back(beta2_power);
inputs_.push_back(learning_rate);
inputs_.push_back(beta1);
inputs_.push_back(beta2);
inputs_.push_back(epsilon);
inputs_.push_back(grad);
inputs_.push_back(indices);
grads_offset_ = grads_offset;
indices_offset_ = indices_offset;
}
void SparseAdamOptimInfo::Update(const Values &values, const Lengths &lens) {
void *data_ptr = values.data();
AddressPtr beta1_power = inputs_[3];
size_t size = values.size() * sizeof(float);
auto ret = memcpy_s(beta1_power->addr, size, data_ptr, size);
if (ret != 0) {
MS_LOG(EXCEPTION) << "memcpy_s error, errorno(" << ret << ")";
}
}
const AddressPtr &SparseAdamOptimInfo::gradient() { return inputs_[9]; }
const AddressPtr &SparseAdamOptimInfo::indices() { return inputs_[10]; }
bool SparseAdamOptimInfo::IsSparse() const { return true; }
size_t SparseAdamOptimInfo::grad_index() { return 6; }
size_t SparseAdamOptimInfo::indices_index() { return 7; }
SparseFtrlOptimInfo::SparseFtrlOptimInfo(const AddressPtr &weight, const AddressPtr &accum, const AddressPtr &linear,
const AddressPtr &grad, const AddressPtr &indices, size_t grads_offset,
size_t indices_offset) {
inputs_.push_back(weight);
inputs_.push_back(accum);
inputs_.push_back(linear);
inputs_.push_back(grad);
inputs_.push_back(indices);
grads_offset_ = grads_offset;
indices_offset_ = indices_offset;
}
const AddressPtr &SparseFtrlOptimInfo::gradient() { return inputs_[3]; }
const AddressPtr &SparseFtrlOptimInfo::indices() { return inputs_[4]; }
bool SparseFtrlOptimInfo::IsSparse() const { return true; }
size_t SparseFtrlOptimInfo::grad_index() { return 0; }
size_t SparseFtrlOptimInfo::indices_index() { return 1; }
} // namespace ps
} // namespace parallel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_MINDSPORE_CCSRC_PARALLEL_PS_OPTIMIZER_INFO_H_
#define MINDSPORE_MINDSPORE_CCSRC_PARALLEL_PS_OPTIMIZER_INFO_H_
#include <vector>
#include "kernel/kernel.h"
#include "parallel/ps/common.h"
namespace mindspore {
namespace parallel {
namespace ps {
using mindspore::kernel::AddressPtr;
class OptimizerInfo {
public:
OptimizerInfo() = default;
virtual ~OptimizerInfo() = default;
virtual void Update(const Values &values, const Lengths &lengths) {}
virtual void UpdateWeight(const WeightPtr &weight);
virtual void Accumulate(const Values &values, const Lengths &lengths) = 0;
virtual void Reset() {}
void AddWorkspace(const AddressPtr &workspace);
virtual const AddressPtr &gradient() = 0;
virtual const AddressPtr &indices() = 0;
const std::vector<AddressPtr> &inputs();
const std::vector<AddressPtr> &workspaces();
const std::vector<AddressPtr> &outputs();
virtual bool IsSparse() const;
virtual size_t grad_index();
virtual size_t indices_index();
protected:
std::vector<AddressPtr> inputs_;
std::vector<AddressPtr> workspaces_;
std::vector<AddressPtr> outputs_;
};
class DenseOptimInfo : public OptimizerInfo {
public:
DenseOptimInfo() = default;
~DenseOptimInfo() override = default;
void Accumulate(const Values &values, const Lengths &lens) override;
};
class SparseOptimInfo : public OptimizerInfo {
public:
SparseOptimInfo() = default;
~SparseOptimInfo() override = default;
void Accumulate(const Values &values, const Lengths &lens) override;
void Reset() override;
protected:
size_t grads_offset_{0};
size_t indices_offset_{0};
};
class MomentumOptimInfo : public DenseOptimInfo {
public:
MomentumOptimInfo(const AddressPtr &weight, const AddressPtr &accumulate, const AddressPtr &learning_rate,
const AddressPtr &gradient, const AddressPtr &momentum);
~MomentumOptimInfo() override = default;
const AddressPtr &gradient();
const AddressPtr &indices();
};
class SparseAdamOptimInfo : public SparseOptimInfo {
public:
SparseAdamOptimInfo(const AddressPtr &weight, const AddressPtr &m, const AddressPtr &v, const AddressPtr &beta1_power,
const AddressPtr &beta2_power, const AddressPtr &learning_rate, const AddressPtr &beta1,
const AddressPtr &beta2, const AddressPtr &epsilon, const AddressPtr &grad,
const AddressPtr &indices, size_t grads_offset, size_t indices_offset);
~SparseAdamOptimInfo() override = default;
void Update(const Values &values, const Lengths &lens) override;
const AddressPtr &gradient();
const AddressPtr &indices();
bool IsSparse() const override;
size_t grad_index() override;
size_t indices_index() override;
};
class SparseFtrlOptimInfo : public SparseOptimInfo {
public:
SparseFtrlOptimInfo(const AddressPtr &weight, const AddressPtr &accum, const AddressPtr &linear,
const AddressPtr &grad, const AddressPtr &indices, size_t grads_offset, size_t indices_offset);
~SparseFtrlOptimInfo() override = default;
const AddressPtr &gradient();
const AddressPtr &indices();
bool IsSparse() const override;
size_t grad_index() override;
size_t indices_index() override;
};
} // namespace ps
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_MINDSPORE_CCSRC_PARALLEL_PS_OPTIMIZER_INFO_H_
......@@ -117,6 +117,7 @@ list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/ir/lite/tensor.cc"
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/parallel/strategy_checkpoint/parallel_strategy_checkpoint.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/parallel/ps/util.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/parallel/ps/scheduler.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/parallel/ps/optimizer_info.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/anf_ir.pb.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/node_strategy.pb.cc")
list(REMOVE_ITEM MINDSPORE_SRC_LIST "../../../mindspore/ccsrc/utils/load_onnx/anf_model_parser.cc")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册