Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
2dc9f632
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2dc9f632
编写于
3月 31, 2020
作者:
K
kswang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cpu st lenet
上级
e2df8485
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
34 addition
and
33 deletion
+34
-33
tests/st/networks/test_cpu_lenet.py
tests/st/networks/test_cpu_lenet.py
+34
-33
未找到文件。
tests/st/networks/test_cpu_
network
.py
→
tests/st/networks/test_cpu_
lenet
.py
浏览文件 @
2dc9f632
...
...
@@ -12,25 +12,44 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Function:
test network
Usage:
python test_network_main.py --net lenet --target Davinci
"""
import
os
import
time
import
pytest
import
numpy
as
np
import
argparse
import
mindspore.nn
as
nn
from
mindspore.common.tensor
import
Tensor
from
mindspore.nn
import
TrainOneStepCell
,
WithLossCell
import
mindspore.context
as
context
from
mindspore.nn.optim
import
Momentum
from
models.lenet
import
LeNet
from
models.resnetv1_5
import
resnet50
from
models.alexnet
import
AlexNet
import
numpy
as
np
import
mindspore.nn
as
nn
from
mindspore.ops
import
operations
as
P
from
mindspore
import
Tensor
class
LeNet
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
LeNet
,
self
).
__init__
()
self
.
relu
=
P
.
ReLU
()
self
.
batch_size
=
32
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
kernel_size
=
5
,
stride
=
1
,
padding
=
0
,
has_bias
=
False
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
kernel_size
=
5
,
stride
=
1
,
padding
=
0
,
has_bias
=
False
,
pad_mode
=
'valid'
)
self
.
pool
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
reshape
=
P
.
Reshape
()
self
.
fc1
=
nn
.
Dense
(
400
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
def
construct
(
self
,
input_x
):
output
=
self
.
conv1
(
input_x
)
output
=
self
.
relu
(
output
)
output
=
self
.
pool
(
output
)
output
=
self
.
conv2
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
pool
(
output
)
output
=
self
.
reshape
(
output
,
(
self
.
batch_size
,
-
1
))
output
=
self
.
fc1
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
fc2
(
output
)
output
=
self
.
relu
(
output
)
output
=
self
.
fc3
(
output
)
return
output
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
def
train
(
net
,
data
,
label
):
...
...
@@ -48,15 +67,6 @@ def train(net, data, label):
print
(
"+++++++++++++++++++++++++++"
)
assert
res
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_onecard
def
test_resnet50
():
data
=
Tensor
(
np
.
ones
([
32
,
3
,
224
,
224
]).
astype
(
np
.
float32
)
*
0.01
)
label
=
Tensor
(
np
.
ones
([
32
]).
astype
(
np
.
int32
))
net
=
resnet50
(
32
,
10
)
train
(
net
,
data
,
label
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_onecard
...
...
@@ -65,12 +75,3 @@ def test_lenet():
label
=
Tensor
(
np
.
ones
([
32
]).
astype
(
np
.
int32
))
net
=
LeNet
()
train
(
net
,
data
,
label
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_cpu
@
pytest
.
mark
.
env_onecard
def
test_alexnet
():
data
=
Tensor
(
np
.
ones
([
32
,
3
,
227
,
227
]).
astype
(
np
.
float32
)
*
0.01
)
label
=
Tensor
(
np
.
ones
([
32
]).
astype
(
np
.
int32
))
net
=
AlexNet
()
train
(
net
,
data
,
label
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录