提交 2d433e64 编写于 作者: U unknown

modify

上级 91adbf7e
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
......@@ -14,21 +13,13 @@
# limitations under the License.
# ============================================================================
"""evaluation."""
import os, time
import argparse
from mindspore import context
from mindspore import log as logger
from mindspore.communication.management import init
import mindspore.nn as nn
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore import Model, ParallelMode
import argparse
from mindspore import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import Callback,CheckpointConfig, ModelCheckpoint, TimeMonitor
from src.md_dataset import create_dataset
from src.losses import OhemLoss
from src.miou_precision import MiouPrecision
from src.miou_precision import MiouPrecision
from src.deeplabv3 import deeplabv3_resnet50
from src.config import config
parser = argparse.ArgumentParser(description="Deeplabv3 evaluation")
......@@ -44,15 +35,16 @@ print(args_opt)
if __name__ == "__main__":
args_opt.crop_size = config.crop_size
args_opt.base_size = config.crop_size
eval_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="eval")
net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size,3,args_opt.crop_size,args_opt.crop_size],
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
decoder_output_stride=config.decoder_output_stride, output_stride = config.output_stride,
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid = config.image_pyramid)
eval_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="eval")
net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
param_dict = load_checkpoint(args_opt.checkpoint_url)
load_param_into_net(net, param_dict)
mIou = MiouPrecision(config.seg_num_classes)
metrics={'mIou':mIou}
metrics = {'mIou': mIou}
loss = OhemLoss(config.seg_num_classes, config.ignore_label)
model = Model(net, loss, metrics=metrics)
model.eval(eval_dataset)
\ No newline at end of file
model.eval(eval_dataset)
\ No newline at end of file
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
......@@ -14,18 +13,13 @@
# limitations under the License.
# ============================================================================
"""train."""
import os, time
import argparse
from mindspore import context
from mindspore import log as logger
from mindspore.communication.management import init
import mindspore.nn as nn
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore import Model, ParallelMode
import argparse
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import Callback,CheckpointConfig, ModelCheckpoint, TimeMonitor
from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
from src.md_dataset import create_dataset
from src.losses import OhemLoss
from src.deeplabv3 import deeplabv3_resnet50
......@@ -40,8 +34,7 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id, default
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
parser.add_argument('--max_checkpoint_num', type=int, default=5, help='Max checkpoint number.')
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
"default is 1000.")
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.")
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
args_opt = parser.parse_args()
print(args_opt)
......@@ -63,22 +56,22 @@ class LossCallBack(Callback):
cb_params = run_context.original_args()
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
str(cb_params.net_outputs)))
def model_fine_tune(flags, net, fix_weight_layer):
def model_fine_tune(flags, train_net, fix_weight_layer):
checkpoint_path = flags.checkpoint_url
if checkpoint_path is None:
return
param_dict = load_checkpoint(checkpoint_path)
load_param_into_net(net, param_dict)
for para in net.trainable_params():
load_param_into_net(train_net, param_dict)
for para in train_net.trainable_params():
if fix_weight_layer in para.name:
para.requires_grad=False
para.requires_grad = False
if __name__ == "__main__":
if args_opt.distribute == "true":
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
init()
args_opt.base_size = config.crop_size
args_opt.crop_size = config.crop_size
train_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="train")
train_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="train")
dataset_size = train_dataset.get_dataset_size()
time_cb = TimeMonitor(data_size=dataset_size)
callback = [time_cb, LossCallBack()]
......@@ -87,13 +80,14 @@ if __name__ == "__main__":
keep_checkpoint_max=args_opt.save_checkpoint_num)
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
callback.append(ckpoint_cb)
net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size,3,args_opt.crop_size,args_opt.crop_size],
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
decoder_output_stride=config.decoder_output_stride, output_stride = config.output_stride,
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid = config.image_pyramid)
net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
net.set_train()
model_fine_tune(args_opt, net, 'layer')
loss = OhemLoss(config.seg_num_classes, config.ignore_label)
opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay)
model = Model(net, loss, opt)
model.train(args_opt.epoch_size, train_dataset, callback)
\ No newline at end of file
model.train(args_opt.epoch_size, train_dataset, callback)
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册