提交 277aba53 编写于 作者: C Cathy Wong

dataset: Fixup docs; remove pylint disabled messages in UT

上级 e11c9532
......@@ -1040,7 +1040,7 @@ class Dataset:
Args:
columns (list[str], optional): List of columns to be used to specify the order of columns
(defaults=None, means all columns).
(default=None, means all columns).
Returns:
Iterator, list of ndarray.
......@@ -3382,7 +3382,7 @@ class ManifestDataset(MappableDataset):
class_indexing (dict, optional): A str-to-int mapping from label name to index
(default=None, the folder names will be sorted alphabetically and each
class will be given a unique index starting from 0).
decode (bool, optional): decode the images after reading (defaults=False).
decode (bool, optional): decode the images after reading (default=False).
num_shards (int, optional): Number of shards that the dataset should be divided
into (default=None).
shard_id (int, optional): The shard ID within num_shards (default=None). This
......@@ -4760,7 +4760,7 @@ class _NumpySlicesDataset:
def process_dict(self, input_data):
"""
Convert the dict like data into tuple format, when input is a tuple of dict then compose it into a dict first.
Convert the dict like data into tuple format, when input is a tuple of dicts then compose it into a dict first.
"""
# Convert pandas like dict(has "values" column) into General dict
data_keys = list(input_data.keys())
......
......@@ -202,7 +202,7 @@ class RandomHorizontalFlip(cde.RandomHorizontalFlipOp):
Flip the input image horizontally, randomly with a given probability.
Args:
prob (float): Probability of the image being flipped (default=0.5).
prob (float, optional): Probability of the image being flipped (default=0.5).
"""
@check_prob
......@@ -217,7 +217,7 @@ class RandomHorizontalFlipWithBBox(cde.RandomHorizontalFlipWithBBoxOp):
Maintains data integrity by also flipping bounding boxes in an object detection pipeline.
Args:
prob (float): Probability of the image being flipped (default=0.5).
prob (float, optional): Probability of the image being flipped (default=0.5).
"""
@check_prob
......@@ -231,7 +231,7 @@ class RandomVerticalFlip(cde.RandomVerticalFlipOp):
Flip the input image vertically, randomly with a given probability.
Args:
prob (float): Probability of the image being flipped (default=0.5).
prob (float, optional): Probability of the image being flipped (default=0.5).
"""
@check_prob
......
......@@ -4,6 +4,7 @@
"numParallelWorkers": 4,
"workerConnectorSize": 16,
"opConnectorSize": 16,
"seed": 5489
"seed": 5489,
"monitor_sampling_interval": 15
}
......@@ -12,10 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from util import save_and_check
import mindspore.dataset as ds
from mindspore import log as logger
from util import save_and_check
# Note: Number of rows in test.data dataset: 12
DATA_DIR = ["../data/dataset/testTFTestAllTypes/test.data"]
......@@ -434,7 +433,6 @@ def test_batch_exception_11():
assert "drop_remainder" in str(e)
# pylint: disable=redundant-keyword-arg
def test_batch_exception_12():
"""
Test batch exception: wrong input order, drop_remainder wrongly used as batch_size
......@@ -447,12 +445,12 @@ def test_batch_exception_12():
# apply dataset operations
data1 = ds.TFRecordDataset(DATA_DIR)
try:
data1 = data1.batch(drop_remainder, batch_size=batch_size)
data1 = data1.batch(drop_remainder, batch_size)
sum([1 for _ in data1])
except Exception as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "batch_size" in str(e)
assert "drop_remainder" in str(e)
def test_batch_exception_13():
......
......@@ -109,23 +109,18 @@ def test_center_crop_comp(height=375, width=375, plot=False):
visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2)
# pylint: disable=unnecessary-lambda
def test_crop_grayscale(height=375, width=375):
"""
Test that centercrop works with pad and grayscale images
"""
def channel_swap(image):
"""
Py func hack for our pytransforms to work with c transforms
"""
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
# Note: image.transpose performs channel swap to allow py transforms to
# work with c transforms
transforms = [
py_vision.Decode(),
py_vision.Grayscale(1),
py_vision.ToTensor(),
(lambda image: channel_swap(image))
(lambda image: (image.transpose(1, 2, 0) * 255).astype(np.uint8))
]
transform = py_vision.ComposeOp(transforms)
......
......@@ -37,6 +37,7 @@ def test_basic():
num_parallel_workers_original = ds.config.get_num_parallel_workers()
prefetch_size_original = ds.config.get_prefetch_size()
seed_original = ds.config.get_seed()
monitor_sampling_interval_original = ds.config.get_monitor_sampling_interval()
ds.config.load('../data/dataset/declient.cfg')
......@@ -45,23 +46,27 @@ def test_basic():
# assert ds.config.get_worker_connector_size() == 16
assert ds.config.get_prefetch_size() == 16
assert ds.config.get_seed() == 5489
# assert ds.config.get_monitor_sampling_interval() == 15
# ds.config.set_rows_per_buffer(1)
ds.config.set_num_parallel_workers(2)
# ds.config.set_worker_connector_size(3)
ds.config.set_prefetch_size(4)
ds.config.set_seed(5)
ds.config.set_monitor_sampling_interval(45)
# assert ds.config.get_rows_per_buffer() == 1
assert ds.config.get_num_parallel_workers() == 2
# assert ds.config.get_worker_connector_size() == 3
assert ds.config.get_prefetch_size() == 4
assert ds.config.get_seed() == 5
assert ds.config.get_monitor_sampling_interval() == 45
# Restore original configuration values
ds.config.set_num_parallel_workers(num_parallel_workers_original)
ds.config.set_prefetch_size(prefetch_size_original)
ds.config.set_seed(seed_original)
ds.config.set_monitor_sampling_interval(monitor_sampling_interval_original)
def test_get_seed():
......@@ -150,7 +155,7 @@ def test_deterministic_run_fail():
def test_deterministic_run_pass():
"""
Test deterministic run with with setting the seed
Test deterministic run with setting the seed
"""
logger.info("test_deterministic_run_pass")
......
......@@ -50,9 +50,7 @@ def test_diff_predicate_func():
def filter_func_ge(data):
if data > 10:
return False
return True
return data <= 10
def generator_1d():
......@@ -108,15 +106,11 @@ def test_filter_by_generator_with_repeat_after():
def filter_func_batch(data):
if data[0] > 8:
return False
return True
return data[0] <= 8
def filter_func_batch_after(data):
if data > 20:
return False
return True
return data <= 20
# test with batchOp before
......@@ -152,9 +146,7 @@ def test_filter_by_generator_with_batch_after():
def filter_func_shuffle(data):
if data > 20:
return False
return True
return data <= 20
# test with batchOp before
......@@ -169,9 +161,7 @@ def test_filter_by_generator_with_shuffle():
def filter_func_shuffle_after(data):
if data > 20:
return False
return True
return data <= 20
# test with batchOp after
......@@ -197,15 +187,11 @@ def generator_1d_zip2():
def filter_func_zip(data1, data2):
_ = data2
if data1 > 20:
return False
return True
return data1 <= 20
def filter_func_zip_after(data1):
if data1 > 20:
return False
return True
return data1 <= 20
# test with zipOp before
......@@ -247,16 +233,11 @@ def test_filter_by_generator_with_zip_after():
def filter_func_map(col1, col2):
_ = col2
if col1[0] > 8:
return True
return False
return col1[0] > 8
# pylint: disable=simplifiable-if-statement
def filter_func_map_part(col1):
if col1 < 3:
return True
return False
return col1 < 3
def filter_func_map_all(col1, col2):
......@@ -311,9 +292,7 @@ def test_filter_by_generator_with_map_part_col():
def filter_func_rename(data):
if data > 8:
return True
return False
return data > 8
# test with rename before
......@@ -334,15 +313,11 @@ def test_filter_by_generator_with_rename():
# test input_column
def filter_func_input_column1(col1, col2):
_ = col2
if col1[0] < 8:
return True
return False
return col1[0] < 8
def filter_func_input_column2(col1):
if col1[0] < 8:
return True
return False
return col1[0] < 8
def filter_func_input_column3(col1):
......@@ -439,9 +414,7 @@ def test_filter_by_generator_Partial2():
def filter_func_Partial(col1, col2):
_ = col2
if col1[0] % 3 == 0:
return True
return False
return col1[0] % 3 == 0
def generator_big(maxid=20):
......@@ -461,9 +434,7 @@ def test_filter_by_generator_Partial():
def filter_func_cifar(col1, col2):
_ = col1
if col2 % 3 == 0:
return True
return False
return col2 % 3 == 0
# test with cifar10
......
......@@ -16,12 +16,12 @@
Testing Pad op in DE
"""
import numpy as np
from util import diff_mse
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
......@@ -69,23 +69,19 @@ def test_pad_op():
assert mse < 0.01
# pylint: disable=unnecessary-lambda
def test_pad_grayscale():
"""
Tests that the pad works for grayscale images
"""
def channel_swap(image):
"""
Py func hack for our pytransforms to work with c transforms
"""
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
# Note: image.transpose performs channel swap to allow py transforms to
# work with c transforms
transforms = [
py_vision.Decode(),
py_vision.Grayscale(1),
py_vision.ToTensor(),
(lambda image: channel_swap(image))
(lambda image: (image.transpose(1, 2, 0) * 255).astype(np.uint8))
]
transform = py_vision.ComposeOp(transforms)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册