Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
204ab115
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
204ab115
编写于
8月 22, 2020
作者:
Z
zhengjun10
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add bn convert scale pass
上级
add52da7
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
502 addition
and
5 deletion
+502
-5
mindspore/lite/test/models_caffe.cfg
mindspore/lite/test/models_caffe.cfg
+5
-5
mindspore/lite/tools/converter/graphdef_transform.cc
mindspore/lite/tools/converter/graphdef_transform.cc
+13
-0
mindspore/lite/tools/converter/legacy_optimizer/fusion/CMakeLists.txt
...te/tools/converter/legacy_optimizer/fusion/CMakeLists.txt
+1
-0
mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.cc
...r/legacy_optimizer/fusion/batchnorm_convert_scale_pass.cc
+383
-0
mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h
...er/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h
+100
-0
未找到文件。
mindspore/lite/test/models_caffe.cfg
浏览文件 @
204ab115
...
...
@@ -16,7 +16,7 @@ tracking
mtk_isface
mtk_landmark
mtk_pose_tuku
mtk_face_recognition_v1
#
mtk_face_recognition_v1
mtk_2012_ATLANTA_10class_20190614_v41
mtk_detect-deeper-halfdeeper-mbv1-lastearlySSD-shortcut-400-400_nopostprocess_simplified
detect-deeper-halfdeeper-mbv1-shortcut-400-400_nopostprocess_simplified
...
...
@@ -28,16 +28,16 @@ ml_hand_detection
ml_ocr_cn
ml_ocr_sfz_detect_0325
ml_hardware_liveness
ml_liveness_detect_landmark
#
ml_liveness_detect_landmark
ml_face_contour
2012_ATLANTA_1class_20190621_v4.x_nomean
ml_handpose
ml_ocr_sfz_add_final_0325
ml_hardware_pose
#
ml_hardware_pose
ml_bank_recog
2012_ATLANTA_10class_20190131_v4.0
mnet
recognition
#
recognition
ml_face_landmark
model_hebing_3branch
hiai_cv_focusShootOCRModel_07
...
...
@@ -50,7 +50,7 @@ hiai_cpu_face_hat
hiai_video_seg
hiai_semantic_seg
hiai_human_seg
hiai_face_recognition_1
#
hiai_face_recognition_1
hiai_cpu_face_detect
detect-mbv1-shortcut-400-400_nopostprocess_simplified
detect_mbv1_640_480_nopostprocess_simplified
mindspore/lite/tools/converter/graphdef_transform.cc
浏览文件 @
204ab115
...
...
@@ -27,6 +27,7 @@
#include "tools/converter/legacy_optimizer/fusion/format_trans_fusion_pass.h"
#include "tools/converter/legacy_optimizer/fusion/format_trans_transpose_fusion_pass.h"
#include "tools/converter/legacy_optimizer/fusion/quant_cast_fusion_pass.h"
#include "tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h"
#include "tools/converter/legacy_optimizer/graph/weight_format_hardcode_pass.h"
#include "tools/converter/legacy_optimizer/graph/weight_format_transform_pass.h"
#include "tools/converter/legacy_optimizer/graph/format_trans_pass.h"
...
...
@@ -126,6 +127,17 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
}
}
// postconvert pass
{
Optimizer
fusionOptimizer
;
fusionOptimizer
.
AddPass
(
new
(
std
::
nothrow
)
BatchNormConvertScalePass
());
fusionOptimizer
.
AddPass
(
new
(
std
::
nothrow
)
IsolatedNodeRemovePass
());
status
=
fusionOptimizer
.
Run
(
graphDefT
);
if
(
status
!=
RET_OK
&&
status
!=
RET_NO_CHANGE
)
{
MS_LOG
(
ERROR
)
<<
"Run fusionOptimizer BatchNormConvertScalePass Failed"
;
return
status
;
}
}
// format transform
if
(
ctx
.
formatTrans
)
{
Optimizer
formatTransOptimizer
;
...
...
@@ -187,6 +199,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
return
status
;
}
}
// topological sorting
{
Optimizer
topologicalOptimizer
;
...
...
mindspore/lite/tools/converter/legacy_optimizer/fusion/CMakeLists.txt
浏览文件 @
204ab115
...
...
@@ -6,6 +6,7 @@ add_library(fusion_mid OBJECT
${
CMAKE_CURRENT_SOURCE_DIR
}
/batchnorm_fold_fusion_pass.cc
${
CMAKE_CURRENT_SOURCE_DIR
}
/format_trans_fusion_pass.cc
${
CMAKE_CURRENT_SOURCE_DIR
}
/format_trans_transpose_fusion_pass.cc
${
CMAKE_CURRENT_SOURCE_DIR
}
/batchnorm_convert_scale_pass.cc
)
target_link_libraries
(
fusion_mid securec
)
mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.cc
0 → 100644
浏览文件 @
204ab115
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h"
#include <cfloat>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "utils/log_adapter.h"
#include "tools/common/graph_util.h"
#include "tools/common/tensor_util.h"
#include "include/errorcode.h"
#include "schema/inner/model_generated.h"
#include "src/common/op_utils.h"
namespace
mindspore
{
namespace
lite
{
#define CAFFE_BATCHNORM_OP_WEIGHT_NUM 2
#define TF_BATCHNORM_OP_WEIGHT_NUM 4
#define CAFFE_BATCHNORM_MEAN_INDEX 0
#define CAFFE_BATCHNORM_VARIANCE_INDEX 1
#define TF_BATCHNORM_SCALE_INDEX 0
#define TF_BATCHNORM_BIAS_INDEX 1
#define TF_BATCHNORM_MEAN_INDEX 2
#define TF_BATCHNORM_VARIANCE_INDEX 3
namespace
{
constexpr
const
float
EPS
=
1e-8
;
constexpr
const
float
EPS_DEFAULT_FLOAT
=
1e-5
;
constexpr
const
float
POW_NUM
=
0.5
;
constexpr
const
int32_t
NCHW_DIM_C
=
1
;
}
STATUS
BatchNormConvertScalePass
::
Run
(
MetaGraphT
*
graph
)
{
return
FusionPass
::
Run
(
graph
);
}
STATUS
BatchNormConvertScalePass
::
DefinePattern
()
{
// with preNode
{
auto
inputOp
=
std
::
make_shared
<
PatternOp
>
();
inputOp
->
id
=
inputOpName
;
inputOp
->
types
=
{
schema
::
PrimitiveType_NONE
};
inputOp
->
isPlaceHold
=
true
;
auto
bnOp
=
std
::
make_shared
<
PatternOp
>
();
bnOp
->
id
=
bnOpName
;
bnOp
->
types
=
{
schema
::
PrimitiveType_FusedBatchNorm
,
schema
::
PrimitiveType_BatchNorm
};
bnOp
->
left
=
inputOp
;
std
::
unique_ptr
<
FusionPattern
>
fusionPattern
(
new
(
std
::
nothrow
)
FusionPattern
(
bnPatternName
));
if
(
fusionPattern
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new fusionPattern failed"
;
return
RET_ERROR
;
}
fusionPattern
->
AddPatternOp
(
inputOp
);
fusionPattern
->
AddPatternOp
(
bnOp
);
fusionPattern
->
Finish
();
this
->
patterns
.
emplace_back
(
fusionPattern
.
release
());
}
return
RET_OK
;
}
STATUS
BatchNormConvertScalePass
::
DoFusion
(
MetaGraphT
*
graph
,
const
std
::
string
&
patternName
,
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Path
>>
&
matchedPath
)
{
MS_ASSERT
(
graph
!=
nullptr
);
if
(
patternName
!=
bnPatternName
)
{
MS_LOG
(
ERROR
)
<<
"BatchNormConvertScale-Fusion match failed"
;
return
RET_PARAM_INVALID
;
}
auto
status
=
FindNodes
(
graph
,
matchedPath
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"FindNodes failed: "
<<
status
;
return
status
;
}
auto
type
=
bnNode
->
primitive
->
value
.
type
;
if
(
type
!=
schema
::
PrimitiveType_FusedBatchNorm
&&
type
!=
schema
::
PrimitiveType_BatchNorm
)
{
return
RET_OK
;
}
auto
bnPath
=
matchedPath
.
at
(
bnOpName
);
status
=
GetTransParam
(
graph
,
bnPath
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"GetTransParam failed: "
<<
status
;
return
status
;
}
status
=
GenNewScaleTensor
(
graph
,
bnPath
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"GenNewScaleTensor failed: "
<<
status
;
return
status
;
}
status
=
ConvertBNToScale
(
graph
,
bnPath
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"GenNewScaleTensor failed: "
<<
status
;
return
status
;
}
return
RET_OK
;
}
STATUS
BatchNormConvertScalePass
::
ConvertBNToScale
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
)
{
auto
scaleNode
=
std
::
unique_ptr
<
CNodeT
>
(
new
(
std
::
nothrow
)
CNodeT
);
if
(
scaleNode
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new TransNode failed"
;
return
RET_ERROR
;
}
scaleNode
->
name
=
bnNode
->
name
;
scaleNode
->
primitive
=
std
::
make_unique
<
schema
::
PrimitiveT
>
();
if
(
scaleNode
->
primitive
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"op->primitive is null"
;
return
RET_NULL_PTR
;
}
scaleNode
->
primitive
->
value
.
type
=
schema
::
PrimitiveType_Scale
;
std
::
unique_ptr
<
ScaleT
>
scaleParam
(
new
ScaleT
());
if
(
scaleParam
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new transposeParam failed"
;
return
RET_ERROR
;
}
scaleParam
->
axis
=
NCHW_DIM_C
;
scaleNode
->
primitive
->
value
.
value
=
scaleParam
.
release
();
auto
scaleIter
=
graph
->
nodes
.
begin
()
+
bnPath
->
nodeIdx
;
STATUS
errorCode
=
RET_OK
;
scaleIter
=
InsertNode
(
graph
,
scaleIter
,
kBefore
,
0
,
std
::
move
(
scaleNode
),
&
errorCode
,
ScaleOpCopyer
);
if
(
errorCode
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"InsertNode failed: %d"
;
// errorCode);
return
errorCode
;
}
auto
&
newScaleNode
=
*
(
scaleIter
-
1
);
graph
->
allTensors
.
emplace_back
(
std
::
move
(
newScaleWeightTensor
));
auto
weightTensorIdx
=
graph
->
allTensors
.
size
()
-
1
;
graph
->
allTensors
.
emplace_back
(
std
::
move
(
newScaleBiasTensor
));
auto
biasTensorIdx
=
graph
->
allTensors
.
size
()
-
1
;
newScaleNode
->
inputIndex
.
push_back
(
weightTensorIdx
);
newScaleNode
->
inputIndex
.
push_back
(
biasTensorIdx
);
// delete bn node
auto
status
=
IsolateOneWayNode
(
graph
,
bnPath
->
nodeIdx
+
1
,
true
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"IsolateOneWayNode "
<<
bnNode
->
name
.
c_str
()
<<
" failed, error: "
<<
status
;
return
status
;
}
return
RET_OK
;
}
STATUS
BatchNormConvertScalePass
::
GenNewScaleTensor
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
)
{
MS_ASSERT
(
graph
!=
nullptr
);
GetTransParam
(
graph
,
bnPath
);
newScaleWeightTensor
=
std
::
unique_ptr
<
TensorT
>
(
new
(
std
::
nothrow
)
TensorT
);
if
(
newScaleWeightTensor
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new weightTensor failed"
;
return
RET_ERROR
;
}
newScaleWeightTensor
->
dataType
=
bnMeanTensor
->
dataType
;
newScaleWeightTensor
->
format
=
bnMeanTensor
->
format
;
newScaleWeightTensor
->
refCount
=
schema
::
NodeType_ValueNode
;
newScaleWeightTensor
->
dims
=
bnMeanTensor
->
dims
;
auto
weightShapeSize
=
GetShapeSize
(
*
bnMeanTensor
);
newScaleWeightTensor
->
data
.
resize
(
weightShapeSize
*
sizeof
(
float
));
auto
ret
=
memcpy_s
(
newScaleWeightTensor
->
data
.
data
(),
weightShapeSize
*
sizeof
(
float
),
transScale
,
weightShapeSize
*
sizeof
(
float
));
if
(
ret
!=
RET_OK
)
{
delete
transScale
;
MS_LOG
(
ERROR
)
<<
"memcpy error: "
<<
ret
;
return
RET_ERROR
;
}
newScaleBiasTensor
=
std
::
unique_ptr
<
TensorT
>
(
new
(
std
::
nothrow
)
TensorT
);
if
(
newScaleBiasTensor
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new weightTensor failed"
;
return
RET_ERROR
;
}
newScaleBiasTensor
->
dataType
=
bnMeanTensor
->
dataType
;
newScaleBiasTensor
->
format
=
bnMeanTensor
->
format
;
newScaleBiasTensor
->
refCount
=
schema
::
NodeType_ValueNode
;
newScaleBiasTensor
->
dims
=
bnMeanTensor
->
dims
;
weightShapeSize
=
GetShapeSize
(
*
bnMeanTensor
);
newScaleBiasTensor
->
data
.
resize
(
weightShapeSize
*
sizeof
(
float
));
ret
=
memcpy_s
(
newScaleBiasTensor
->
data
.
data
(),
weightShapeSize
*
sizeof
(
float
),
transBias
,
weightShapeSize
*
sizeof
(
float
));
if
(
ret
!=
RET_OK
)
{
delete
transBias
;
MS_LOG
(
ERROR
)
<<
"memcpy error: "
<<
ret
;
return
RET_ERROR
;
}
return
RET_OK
;
}
STATUS
BatchNormConvertScalePass
::
FindNodes
(
MetaGraphT
*
graph
,
const
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Path
>>
&
matchedPath
)
{
MS_ASSERT
(
graph
!=
nullptr
);
auto
inputPath
=
matchedPath
.
at
(
inputOpName
);
auto
bnPath
=
matchedPath
.
at
(
bnOpName
);
MS_ASSERT
(
inputPath
!=
nullptr
);
MS_ASSERT
(
bnPath
!=
nullptr
);
if
(
inputPath
->
subGraphIdx
!=
bnPath
->
subGraphIdx
)
{
MS_LOG
(
ERROR
)
<<
"matched nodes should from same subGraph"
;
return
RET_ERROR
;
}
MS_ASSERT
(
graph
->
nodes
.
size
()
>
inputPath
->
nodeIdx
);
MS_ASSERT
(
graph
->
nodes
.
size
()
>
bnPath
->
nodeIdx
);
inputNode
=
graph
->
nodes
.
at
(
inputPath
->
nodeIdx
).
get
();
bnNode
=
graph
->
nodes
.
at
(
bnPath
->
nodeIdx
).
get
();
MS_ASSERT
(
inputNode
!=
nullptr
);
MS_ASSERT
(
bnNode
!=
nullptr
);
return
RET_OK
;
}
STATUS
BatchNormConvertScalePass
::
GetTransParam
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
)
{
MS_ASSERT
(
graph
!=
nullptr
);
MS_ASSERT
(
bnPath
!=
nullptr
);
BNWeightTensors
bnWeightTensors
;
auto
status
=
GetBnWeightTensors
(
graph
,
bnPath
,
&
bnWeightTensors
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"GetBnWeightTensors error"
;
return
status
;
}
auto
*
meanTensor
=
bnWeightTensors
.
meanTensor
;
auto
*
varianceTensor
=
bnWeightTensors
.
varianceTensor
;
auto
*
scaleTensor
=
bnWeightTensors
.
scaleTensor
;
auto
*
biasTensor
=
bnWeightTensors
.
biasTensor
;
auto
*
meanData
=
reinterpret_cast
<
float
*>
(
meanTensor
->
data
.
data
());
auto
*
varianceData
=
reinterpret_cast
<
float
*>
(
varianceTensor
->
data
.
data
());
eps
=
EPS_DEFAULT_FLOAT
;
status
=
GetBnEpsilon
(
graph
);
if
(
status
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"GetBnEpsilon failed"
;
return
status
;
}
this
->
transScale
=
new
(
std
::
nothrow
)
float
[
bnChannel
];
this
->
transBias
=
new
(
std
::
nothrow
)
float
[
bnChannel
];
// cal transScale, tf : scale/sqrt(variance + eps); caffe : 1/sqrt(variance + eps)
if
(
memcpy_s
(
transScale
,
bnChannel
*
sizeof
(
float
),
varianceData
,
bnChannel
*
sizeof
(
float
))
!=
0
)
{
MS_LOG
(
ERROR
)
<<
"memcpy_s transScale error"
;
return
RET_ERROR
;
}
// 1/sqrt(variance + eps)
for
(
uint32_t
i
=
0
;
i
<
bnChannel
;
i
++
)
{
float
tmp
=
transScale
[
i
]
+
eps
;
tmp
=
pow
(
tmp
,
POW_NUM
);
transScale
[
i
]
=
1
/
tmp
;
}
if
(
scaleTensor
!=
nullptr
)
{
auto
*
scaleData
=
reinterpret_cast
<
float
*>
(
scaleTensor
->
data
.
data
());
// scale/sqrt(variance + eps)
for
(
uint32_t
i
=
0
;
i
<
bnChannel
;
i
++
)
{
transScale
[
i
]
*=
scaleData
[
i
];
}
}
// cal transBias, tf : -scale*mean/sqrt(variance + eps) + bias; caffe : -mean/sqrt(variance + eps)
// -mean/sqrt(variance + eps)
for
(
uint32_t
i
=
0
;
i
<
bnChannel
;
i
++
)
{
transBias
[
i
]
=
-
meanData
[
i
]
*
transScale
[
i
];
}
if
(
biasTensor
!=
nullptr
)
{
auto
*
biasData
=
reinterpret_cast
<
float
*>
(
biasTensor
->
data
.
data
());
// -scale*mean/sqrt(variance + eps) + bias
for
(
uint32_t
i
=
0
;
i
<
bnChannel
;
i
++
)
{
transBias
[
i
]
+=
biasData
[
i
];
}
}
return
RET_OK
;
}
// BatchNorm weight Tensor definition:
// caffe
// estimated_mean --0
// estimated_variance --1
// tensorflow
// scale -- 0
// bias --1
// estimated_mean --2
// estimated_variance --3
STATUS
BatchNormConvertScalePass
::
GetBnWeightTensors
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
,
BNWeightTensors
*
bnWeightTensors
)
{
if
(
graph
==
nullptr
||
bnPath
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"null pointer dereferencing."
;
return
RET_NULL_PTR
;
}
MS_ASSERT
(
graph
->
allTensors
.
size
()
>
bnNode
->
inputIndex
.
at
(
1
));
auto
bnWeightTensorIdxes
=
bnNode
->
inputIndex
;
bnWeightTensorIdxes
.
erase
(
bnWeightTensorIdxes
.
begin
());
if
(
bnWeightTensorIdxes
.
size
()
==
CAFFE_BATCHNORM_OP_WEIGHT_NUM
)
{
bnWeightTensors
->
meanTensor
=
graph
->
allTensors
.
at
(
bnWeightTensorIdxes
[
CAFFE_BATCHNORM_MEAN_INDEX
]).
get
();
bnWeightTensors
->
varianceTensor
=
graph
->
allTensors
.
at
(
bnWeightTensorIdxes
[
CAFFE_BATCHNORM_VARIANCE_INDEX
]).
get
();
}
else
if
(
bnWeightTensorIdxes
.
size
()
==
TF_BATCHNORM_OP_WEIGHT_NUM
)
{
bnWeightTensors
->
scaleTensor
=
graph
->
allTensors
.
at
(
bnWeightTensorIdxes
[
TF_BATCHNORM_SCALE_INDEX
]).
get
();
bnWeightTensors
->
biasTensor
=
graph
->
allTensors
.
at
(
bnWeightTensorIdxes
[
TF_BATCHNORM_BIAS_INDEX
]).
get
();
bnWeightTensors
->
meanTensor
=
graph
->
allTensors
.
at
(
bnWeightTensorIdxes
[
TF_BATCHNORM_MEAN_INDEX
]).
get
();
bnWeightTensors
->
varianceTensor
=
graph
->
allTensors
.
at
(
bnWeightTensorIdxes
[
TF_BATCHNORM_VARIANCE_INDEX
]).
get
();
}
else
{
MS_LOG
(
ERROR
)
<<
"BatchNorm should has 2 or 4 weight tensors, current number of weight tensors: "
<<
bnWeightTensorIdxes
.
size
();
return
RET_ERROR
;
}
if
(
bnWeightTensors
->
meanTensor
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"BatchNorm's mean tensor is nullptr"
;
return
RET_ERROR
;
}
if
(
bnWeightTensors
->
varianceTensor
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"BatchNorm's variance tensor is nullptr"
;
return
RET_ERROR
;
}
bnChannel
=
bnWeightTensors
->
meanTensor
->
data
.
size
()
*
sizeof
(
uint8_t
)
/
sizeof
(
float
);
if
(
bnChannel
<=
0
)
{
MS_LOG
(
ERROR
)
<<
"BatchNorm's channel less or equal 0"
;
return
RET_ERROR
;
}
bnMeanTensor
=
bnWeightTensors
->
meanTensor
;
if
(
bnChannel
!=
bnWeightTensors
->
varianceTensor
->
data
.
size
()
*
sizeof
(
uint8_t
)
/
sizeof
(
float
))
{
MS_LOG
(
ERROR
)
<<
"conv kernel num expected to be equal to variance size"
;
return
RET_ERROR
;
}
if
(
bnWeightTensors
->
scaleTensor
!=
nullptr
)
{
if
(
bnChannel
!=
bnWeightTensors
->
scaleTensor
->
data
.
size
()
*
sizeof
(
uint8_t
)
/
sizeof
(
float
))
{
MS_LOG
(
ERROR
)
<<
"conv kernel num expected to be equal to scale size"
;
return
RET_ERROR
;
}
}
if
(
bnWeightTensors
->
biasTensor
!=
nullptr
)
{
if
(
bnChannel
!=
bnWeightTensors
->
biasTensor
->
data
.
size
()
*
sizeof
(
uint8_t
)
/
sizeof
(
float
))
{
MS_LOG
(
ERROR
)
<<
"conv kernel num expected to be equal to bias size"
;
return
RET_ERROR
;
}
}
return
RET_OK
;
}
STATUS
BatchNormConvertScalePass
::
GetBnEpsilon
(
MetaGraphT
*
graph
)
{
if
(
graph
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"null pointer dereferencing."
;
return
RET_NULL_PTR
;
}
if
(
bnNode
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"null pointer dereferencing."
;
return
RET_NULL_PTR
;
}
if
(
bnNode
->
primitive
->
value
.
type
==
schema
::
PrimitiveType_FusedBatchNorm
)
{
eps
=
bnNode
->
primitive
->
value
.
AsFusedBatchNorm
()
->
epsilon
;
}
else
if
(
bnNode
->
primitive
->
value
.
type
==
schema
::
PrimitiveType_BatchNorm
)
{
eps
=
bnNode
->
primitive
->
value
.
AsBatchNorm
()
->
epsilon
;
}
else
{
MS_LOG
(
ERROR
)
<<
"match pattern has error, not BatchNorm node"
;
return
RET_ERROR
;
}
if
(
eps
<
EPS
)
{
eps
=
EPS_DEFAULT_FLOAT
;
}
return
RET_OK
;
}
BatchNormConvertScalePass
::~
BatchNormConvertScalePass
()
{
if
(
this
->
transScale
!=
nullptr
)
{
delete
(
this
->
transScale
);
}
if
(
this
->
transBias
!=
nullptr
)
{
delete
(
this
->
transBias
);
}
}
}
// namespace lite
}
// namespace mindspore
mindspore/lite/tools/converter/legacy_optimizer/fusion/batchnorm_convert_scale_pass.h
0 → 100644
浏览文件 @
204ab115
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
#define MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
#include <unordered_map>
#include <memory>
#include <string>
#include <utility>
#include "tools/converter/legacy_optimizer/fusion/fusion_pass.h"
#include "tools/common/graph_util.h"
namespace
mindspore
{
namespace
lite
{
struct
BNWeightTensors
{
TensorT
*
meanTensor
=
nullptr
;
TensorT
*
varianceTensor
=
nullptr
;
TensorT
*
scaleTensor
=
nullptr
;
TensorT
*
biasTensor
=
nullptr
;
};
class
BatchNormConvertScalePass
:
public
FusionPass
{
public:
BatchNormConvertScalePass
()
=
default
;
~
BatchNormConvertScalePass
()
override
;
STATUS
DefinePattern
()
override
;
STATUS
DoFusion
(
MetaGraphT
*
graph
,
const
std
::
string
&
patternName
,
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Path
>>
&
matchedPath
)
override
;
STATUS
Run
(
MetaGraphT
*
graph
)
override
;
protected:
STATUS
GetTransParam
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
);
// Get and check BNNode weight tensor
STATUS
GetBnWeightTensors
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
,
BNWeightTensors
*
bnWeightTensors
);
STATUS
GetBnEpsilon
(
MetaGraphT
*
graph
);
STATUS
FindNodes
(
MetaGraphT
*
graph
,
const
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Path
>>
&
matchedPath
);
STATUS
GenNewScaleTensor
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
);
STATUS
ConvertBNToScale
(
MetaGraphT
*
graph
,
const
std
::
shared_ptr
<
Path
>
&
bnPath
);
CNodeT
*
inputNode
=
nullptr
;
CNodeT
*
bnNode
=
nullptr
;
std
::
string
inputOpName
=
"Input"
;
std
::
string
bnOpName
=
"BatchNorm"
;
std
::
string
bnPatternName
=
"BnToScaleFusion"
;
uint32_t
bnChannel
=
0
;
float
eps
=
0
;
TensorT
*
bnMeanTensor
=
nullptr
;
float
*
transScale
=
nullptr
;
float
*
transBias
=
nullptr
;
std
::
unique_ptr
<
TensorT
>
newScaleWeightTensor
=
nullptr
;
std
::
unique_ptr
<
TensorT
>
newScaleBiasTensor
=
nullptr
;
OpDefCopyer
ScaleOpCopyer
=
[](
CNodeT
*
inOpDef
)
->
std
::
unique_ptr
<
CNodeT
>
{
std
::
unique_ptr
<
CNodeT
>
newOpDef
(
new
(
std
::
nothrow
)
CNodeT
);
if
(
newOpDef
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new OpDefT failed"
;
return
nullptr
;
}
newOpDef
->
name
=
inOpDef
->
name
;
newOpDef
->
quantType
=
inOpDef
->
quantType
;
newOpDef
->
primitive
=
std
::
make_unique
<
schema
::
PrimitiveT
>
();
newOpDef
->
primitive
->
value
.
type
=
schema
::
PrimitiveType_Scale
;
auto
scaleParam
=
new
(
std
::
nothrow
)
ScaleT
;
if
(
scaleParam
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"new scaleParam failed"
;
return
nullptr
;
}
auto
inParam
=
inOpDef
->
primitive
->
value
.
AsScale
();
MS_ASSERT
(
inParam
!=
nullptr
);
scaleParam
->
axis
=
inParam
->
axis
;
newOpDef
->
primitive
->
value
.
value
=
scaleParam
;
return
std
::
move
(
newOpDef
);
};
};
}
// namespace lite
}
// namespace mindspore
#endif // MINDSPORE_PREDICT_BATCHNORM_CONVERT_SCALE_PASS_H
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录