Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
1e12b07a
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e12b07a
编写于
6月 18, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 18, 2020
浏览文件
操作
浏览文件
下载
差异文件
!2251 Add implementation of SparseApplyProximalAdagrad cpu kernel
Merge pull request !2251 from YuJianfeng/proximal
上级
42c00b15
c3871d98
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
262 addition
and
26 deletion
+262
-26
mindspore/ccsrc/kernel/common_utils.cc
mindspore/ccsrc/kernel/common_utils.cc
+1
-1
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
+15
-10
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
+2
-2
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc
+1
-1
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc
...ore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc
+14
-9
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h
...pore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h
+1
-1
mindspore/ccsrc/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc
...rc/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc
+116
-0
mindspore/ccsrc/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.h
...src/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.h
+56
-0
tests/st/ops/cpu/test_sparse_apply_adam_op.py
tests/st/ops/cpu/test_sparse_apply_adam_op.py
+9
-2
tests/st/ops/cpu/test_sparse_apply_proximal_adagrad_op.py
tests/st/ops/cpu/test_sparse_apply_proximal_adagrad_op.py
+47
-0
未找到文件。
mindspore/ccsrc/kernel/common_utils.cc
浏览文件 @
1e12b07a
...
...
@@ -632,7 +632,7 @@ void ReduceSparseGradient(const SparseGradient &origin_sparse_grad, SparseGradie
}
last_index
=
index
;
}
unique_grad
->
indices_size_
=
unique_indices_size
;
unique_grad
->
indices_size_
=
unique_indices_size
+
1
;
}
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.cc
浏览文件 @
1e12b07a
...
...
@@ -22,6 +22,13 @@ namespace {
constexpr
size_t
kSparseApplyAdamInputSize
=
11
;
}
// namespace
void
SparseApplyAdamCPUKernel
::
InitInputOutputSize
(
const
CNodePtr
&
kernel_node
)
{
CPUKernel
::
InitInputOutputSize
(
kernel_node
);
MS_EXCEPTION_IF_NULL
(
kernel_node
);
workspace_size_list_
.
emplace_back
(
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
workspace_size_list_
.
emplace_back
(
indices_size_
*
sizeof
(
int
));
}
void
SparseApplyAdamCPUKernel
::
InitKernel
(
const
CNodePtr
&
kernel_node
)
{
MS_EXCEPTION_IF_NULL
(
kernel_node
);
std
::
vector
<
size_t
>
var_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
...
...
@@ -50,7 +57,7 @@ void SparseApplyAdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
E
RROR
)
<<
"The first dimension of grad shape must be equal to indices"
;
MS_LOG
(
E
XCEPTION
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
if
(
AnfAlgo
::
HasNodeAttr
(
USE_NESTEROV
,
kernel_node
))
{
use_nesterov_
=
AnfAlgo
::
GetNodeAttr
<
bool
>
(
kernel_node
,
"use_nesterov"
);
...
...
@@ -58,7 +65,7 @@ void SparseApplyAdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
void
SparseApplyAdamCPUKernel
::
UpdateSparseMomentum
(
const
SparseGradient
&
unique_sparse_grad
,
float
*
m
,
float
*
m_t
,
float
*
v
,
float
beta1
,
float
beta2
)
{
float
*
v
,
float
beta1
,
float
beta2
)
const
{
MS_EXCEPTION_IF_NULL
(
m
);
MS_EXCEPTION_IF_NULL
(
m_t
);
MS_EXCEPTION_IF_NULL
(
v
);
...
...
@@ -81,7 +88,7 @@ void SparseApplyAdamCPUKernel::UpdateSparseMomentum(const SparseGradient &unique
}
bool
SparseApplyAdamCPUKernel
::
Launch
(
const
std
::
vector
<
kernel
::
AddressPtr
>
&
inputs
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*workspace*/
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
workspace
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*outputs*/
)
{
if
(
inputs
.
size
()
<
kSparseApplyAdamInputSize
)
{
MS_LOG
(
EXCEPTION
)
<<
"Error input size!"
;
...
...
@@ -101,14 +108,12 @@ bool SparseApplyAdamCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
auto
epsilon
=
reinterpret_cast
<
float
*>
(
inputs
[
8
]
->
addr
)[
0
];
auto
grad
=
reinterpret_cast
<
float
*>
(
inputs
[
9
]
->
addr
);
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
10
]
->
addr
);
auto
new_grad
=
reinterpret_cast
<
float
*>
(
workspace
[
0
]
->
addr
);
auto
new_indices
=
reinterpret_cast
<
int
*>
(
workspace
[
1
]
->
addr
);
std
::
vector
<
float
>
new_grad
;
new_grad
.
reserve
(
indices_size_
*
var_outer_dim_size_
);
std
::
vector
<
int
>
new_indices
;
new_indices
.
reserve
(
indices_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
.
data
(),
new_indices
.
data
(),
indices_size_
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
,
new_indices
,
indices_size_
});
ReduceSparseGradient
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
size_t
total_dim_size
=
var_first_dim_size_
*
var_outer_dim_size_
;
// Update momentum
lr
=
lr
*
std
::
sqrt
(
1
-
beta2_power
)
/
(
1
-
beta1_power
);
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
浏览文件 @
1e12b07a
...
...
@@ -30,13 +30,13 @@ class SparseApplyAdamCPUKernel : public CPUKernel {
~
SparseApplyAdamCPUKernel
()
override
=
default
;
void
InitKernel
(
const
CNodePtr
&
kernel_node
)
override
;
void
InitInputOutputSize
(
const
CNodePtr
&
kernel_node
)
override
;
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
private:
void
UpdateSparseMomentum
(
const
SparseGradient
&
unique_sparse_grad
,
float
*
m
,
float
*
m_t
,
float
*
v
,
float
beta1
,
float
beta2
);
float
beta2
)
const
;
size_t
indices_size_
{
0
};
size_t
var_first_dim_size_
{
0
};
size_t
var_outer_dim_size_
{
1
};
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.cc
浏览文件 @
1e12b07a
...
...
@@ -58,7 +58,7 @@ void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
E
RROR
)
<<
"The first dimension of grad shape must be equal to indices"
;
MS_LOG
(
E
XCEPTION
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
lr_
=
AnfAlgo
::
GetNodeAttr
<
float
>
(
kernel_node
,
"lr"
);
if
(
lr_
<=
0
)
{
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.cc
浏览文件 @
1e12b07a
...
...
@@ -23,6 +23,13 @@ namespace {
constexpr
size_t
kSparseApplyLazyAdamInputSize
=
11
;
}
// namespace
void
SparseApplyLazyAdamCPUKernel
::
InitInputOutputSize
(
const
CNodePtr
&
kernel_node
)
{
CPUKernel
::
InitInputOutputSize
(
kernel_node
);
MS_EXCEPTION_IF_NULL
(
kernel_node
);
workspace_size_list_
.
emplace_back
(
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
workspace_size_list_
.
emplace_back
(
indices_size_
*
sizeof
(
int
));
}
void
SparseApplyLazyAdamCPUKernel
::
InitKernel
(
const
CNodePtr
&
kernel_node
)
{
MS_EXCEPTION_IF_NULL
(
kernel_node
);
std
::
vector
<
size_t
>
var_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
...
...
@@ -51,7 +58,7 @@ void SparseApplyLazyAdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
E
RROR
)
<<
"The first dimension of grad shape must be equal to indices"
;
MS_LOG
(
E
XCEPTION
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
if
(
AnfAlgo
::
HasNodeAttr
(
USE_NESTEROV
,
kernel_node
))
{
use_nesterov_
=
AnfAlgo
::
GetNodeAttr
<
bool
>
(
kernel_node
,
"use_nesterov"
);
...
...
@@ -59,7 +66,7 @@ void SparseApplyLazyAdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
bool
SparseApplyLazyAdamCPUKernel
::
Launch
(
const
std
::
vector
<
kernel
::
AddressPtr
>
&
inputs
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*workspace*/
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
workspace
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*outputs*/
)
{
if
(
inputs
.
size
()
<
kSparseApplyLazyAdamInputSize
)
{
MS_LOG
(
EXCEPTION
)
<<
"Error input size!"
;
...
...
@@ -79,14 +86,12 @@ bool SparseApplyLazyAdamCPUKernel::Launch(const std::vector<kernel::AddressPtr>
auto
epsilon
=
reinterpret_cast
<
float
*>
(
inputs
[
8
]
->
addr
)[
0
];
auto
grad
=
reinterpret_cast
<
float
*>
(
inputs
[
9
]
->
addr
);
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
10
]
->
addr
);
auto
new_grad
=
reinterpret_cast
<
float
*>
(
workspace
[
0
]
->
addr
);
auto
new_indices
=
reinterpret_cast
<
int
*>
(
workspace
[
1
]
->
addr
);
std
::
vector
<
float
>
new_grad
;
new_grad
.
reserve
(
indices_size_
*
var_outer_dim_size_
);
std
::
vector
<
int
>
new_indices
;
new_indices
.
reserve
(
indices_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
.
data
(),
new_indices
.
data
(),
indices_size_
});
DeduplicateIndexedSlices
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
SparseGradient
unique_sparse_grad
({
new_grad
,
new_indices
,
indices_size_
});
ReduceSparseGradient
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
lr
=
lr
*
std
::
sqrt
(
1
-
beta2_power
)
/
(
1
-
beta1_power
);
for
(
size_t
i
=
0
;
i
<
unique_sparse_grad
.
indices_size_
;
++
i
)
{
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h
浏览文件 @
1e12b07a
...
...
@@ -29,7 +29,7 @@ class SparseApplyLazyAdamCPUKernel : public CPUKernel {
~
SparseApplyLazyAdamCPUKernel
()
override
=
default
;
void
InitKernel
(
const
CNodePtr
&
kernel_node
)
override
;
void
InitInputOutputSize
(
const
CNodePtr
&
kernel_node
)
override
;
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc
0 → 100644
浏览文件 @
1e12b07a
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.h"
#include "kernel/common_utils.h"
#include "device/cpu/cpu_device_address.h"
namespace
mindspore
{
namespace
kernel
{
namespace
{
constexpr
size_t
kSparseApplyProximalAdagradInputSize
=
7
;
}
// namespace
void
SparseApplyProximalAdagradCPUKernel
::
InitInputOutputSize
(
const
CNodePtr
&
kernel_node
)
{
CPUKernel
::
InitInputOutputSize
(
kernel_node
);
MS_EXCEPTION_IF_NULL
(
kernel_node
);
workspace_size_list_
.
emplace_back
(
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
workspace_size_list_
.
emplace_back
(
indices_size_
*
sizeof
(
int
));
}
void
SparseApplyProximalAdagradCPUKernel
::
InitKernel
(
const
CNodePtr
&
kernel_node
)
{
MS_EXCEPTION_IF_NULL
(
kernel_node
);
std
::
vector
<
size_t
>
var_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
std
::
vector
<
size_t
>
accum_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
1
);
std
::
vector
<
size_t
>
lr_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
2
);
std
::
vector
<
size_t
>
l1_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
3
);
std
::
vector
<
size_t
>
l2_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
4
);
std
::
vector
<
size_t
>
grad_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
5
);
std
::
vector
<
size_t
>
indices_shape
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
6
);
if
(
!
IsSameShape
(
var_shape
,
accum_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and accum should have the same shape"
;
}
if
(
var_shape
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"var must be at least 1D"
;
}
var_first_dim_size_
=
var_shape
[
0
];
for
(
size_t
i
=
1
;
i
<
var_shape
.
size
();
++
i
)
{
if
(
var_shape
[
i
]
!=
grad_shape
[
i
])
{
MS_LOG
(
EXCEPTION
)
<<
"The shape of var and grad must equal in dimension "
<<
i
;
}
var_outer_dim_size_
*=
var_shape
[
i
];
}
if
(
indices_shape
.
size
()
!=
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"indices must be a 1D vector"
;
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
EXCEPTION
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
if
(
!
lr_shape
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"lr is not a scalar"
;
}
if
(
!
l1_shape
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"l1 is not a scalar"
;
}
if
(
!
l2_shape
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"l2 is not a scalar"
;
}
}
bool
SparseApplyProximalAdagradCPUKernel
::
Launch
(
const
std
::
vector
<
kernel
::
AddressPtr
>
&
inputs
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
workspace
,
const
std
::
vector
<
kernel
::
AddressPtr
>
&
/*outputs*/
)
{
if
(
inputs
.
size
()
<
kSparseApplyProximalAdagradInputSize
)
{
MS_LOG
(
EXCEPTION
)
<<
"Wrong input size!"
;
}
auto
var
=
reinterpret_cast
<
float
*>
(
inputs
[
0
]
->
addr
);
auto
accum
=
reinterpret_cast
<
float
*>
(
inputs
[
1
]
->
addr
);
auto
lr
=
reinterpret_cast
<
float
*>
(
inputs
[
2
]
->
addr
)[
0
];
auto
l1
=
reinterpret_cast
<
float
*>
(
inputs
[
3
]
->
addr
)[
0
];
auto
l2
=
reinterpret_cast
<
float
*>
(
inputs
[
4
]
->
addr
)[
0
];
auto
grad
=
reinterpret_cast
<
float
*>
(
inputs
[
5
]
->
addr
);
auto
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
6
]
->
addr
);
auto
new_grad
=
reinterpret_cast
<
float
*>
(
workspace
[
0
]
->
addr
);
auto
new_indices
=
reinterpret_cast
<
int
*>
(
workspace
[
1
]
->
addr
);
SparseGradient
unique_sparse_grad
({
new_grad
,
new_indices
,
indices_size_
});
ReduceSparseGradient
(
SparseGradient
({
grad
,
indices
,
indices_size_
}),
&
unique_sparse_grad
,
var_first_dim_size_
,
var_outer_dim_size_
);
for
(
size_t
i
=
0
;
i
<
unique_sparse_grad
.
indices_size_
;
++
i
)
{
int
index
=
unique_sparse_grad
.
indices_
[
i
];
if
(
index
<
0
||
IntToSize
(
index
)
>=
var_first_dim_size_
)
{
MS_LOG
(
EXCEPTION
)
<<
"Index "
<<
index
<<
" in indices is out of range after unique process"
;
}
size_t
start_index
=
var_outer_dim_size_
*
index
;
size_t
end_index
=
start_index
+
var_outer_dim_size_
;
for
(
size_t
j
=
start_index
,
k
=
var_outer_dim_size_
*
i
;
j
<
end_index
;
++
j
,
++
k
)
{
accum
[
j
]
+=
grad
[
k
]
*
grad
[
k
];
auto
learning_rate
=
lr
*
(
1
/
std
::
sqrt
(
accum
[
j
]));
auto
prox_v
=
var
[
j
];
prox_v
-=
grad
[
k
]
*
learning_rate
;
if
(
l1
>
0
)
{
var
[
j
]
=
Sign
(
prox_v
)
*
std
::
fmax
(
std
::
fabs
(
prox_v
)
-
learning_rate
*
l1
,
static_cast
<
float
>
(
0.0
))
/
(
1
+
l2
*
learning_rate
);
}
else
{
var
[
j
]
=
prox_v
/
(
1
+
l2
*
learning_rate
);
}
}
}
return
true
;
}
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/sparse_apply_proximal_adagrad_cpu_kernel.h
0 → 100644
浏览文件 @
1e12b07a
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_PROXIMAL_ADAGRAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_PROXIMAL_ADAGRAD_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace
mindspore
{
namespace
kernel
{
class
SparseApplyProximalAdagradCPUKernel
:
public
CPUKernel
{
public:
SparseApplyProximalAdagradCPUKernel
()
=
default
;
~
SparseApplyProximalAdagradCPUKernel
()
override
=
default
;
void
InitKernel
(
const
CNodePtr
&
kernel_node
)
override
;
void
InitInputOutputSize
(
const
CNodePtr
&
kernel_node
)
override
;
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
private:
size_t
indices_size_
{
0
};
size_t
var_first_dim_size_
{
0
};
size_t
var_outer_dim_size_
{
1
};
};
MS_REG_CPU_KERNEL
(
SparseApplyProximalAdagrad
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeInt32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
SparseApplyProximalAdagradCPUKernel
);
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_PROXIMAL_ADAGRAD_CPU_KERNEL_H_
tests/st/ops/cpu/test_sparse_apply_adam_op.py
浏览文件 @
1e12b07a
...
...
@@ -21,6 +21,13 @@ from mindspore.common.parameter import Parameter
from
mindspore.ops
import
operations
as
P
import
mindspore.common.dtype
as
mstype
beta1_power
=
0.9
beta2_power
=
0.999
lr
=
0.001
beta1
=
0.9
beta2
=
0.999
epsilon
=
1e-8
class
Net
(
nn
.
Cell
):
def
__init__
(
self
):
...
...
@@ -30,7 +37,7 @@ class Net(nn.Cell):
self
.
m
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"m"
)
self
.
v
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"v"
)
def
construct
(
self
,
beta1_power
,
beta2_power
,
lr
,
beta1
,
beta2
,
epsilon
,
grad
,
indices
):
def
construct
(
self
,
grad
,
indices
):
out
=
self
.
sparse_apply_adam
(
self
.
var
,
self
.
m
,
self
.
v
,
beta1_power
,
beta2_power
,
lr
,
beta1
,
beta2
,
epsilon
,
grad
,
indices
)
return
out
...
...
@@ -42,5 +49,5 @@ def test_net():
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
sparse_apply_adam
=
Net
()
output
=
sparse_apply_adam
(
0.9
,
0.999
,
0.001
,
0.9
,
0.999
,
1e-8
,
gradient
,
indices
)
output
=
sparse_apply_adam
(
gradient
,
indices
)
print
(
output
[
0
].
asnumpy
())
tests/st/ops/cpu/test_sparse_apply_proximal_adagrad_op.py
0 → 100644
浏览文件 @
1e12b07a
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.common.parameter
import
Parameter
from
mindspore.ops
import
operations
as
P
import
mindspore.common.dtype
as
mstype
class
Net
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
Net
,
self
).
__init__
()
self
.
sparse_apply_proximal_adagrad
=
P
.
SparseApplyProximalAdagrad
()
self
.
var
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"var"
)
self
.
accum
=
Parameter
(
Tensor
(
np
.
ones
([
3
,
3
,
3
]).
astype
(
np
.
float32
)),
name
=
"accum"
)
self
.
lr
=
0.01
self
.
l1
=
0.0
self
.
l2
=
0.0
def
construct
(
self
,
grad
,
indices
):
out
=
self
.
sparse_apply_proximal_adagrad
(
self
.
var
,
self
.
accum
,
self
.
lr
,
self
.
l1
,
self
.
l2
,
grad
,
indices
)
return
out
def
test_net
():
gradient
=
Tensor
(
np
.
random
.
rand
(
3
,
3
,
3
).
astype
(
np
.
float32
))
indices
=
Tensor
([
0
,
1
,
2
],
mstype
.
int32
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
sparse_apply_proximal_adagrad
=
Net
()
output
=
sparse_apply_proximal_adagrad
(
gradient
,
indices
)
print
(
output
.
asnumpy
()[
0
])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录